Universiti Brunei

 Darussalam
Pairwise likelihood goodness-offit tests for factor models

IMPS 2023 @ University of Maryland
Haziq Jamil
Universiti Brunei Darussalam
https://haziqj.ml
27 July 2023
Joint work with Irini Moustaki (LSE)

Introduction

Context

Employ latent variable models (factor models) to binary data Y_{1}, \ldots, Y_{p} collected from surveys via simple random or complex sampling.

(Psychometrics)
Behavioural checklist

(Education)
Maths achievement test

(Sociology)
Intergenerational support

Photo credits: @glenncarstenspeters, @ivalex, @oanhmj (Unsplash).

Introduction (cont.)

- Let $Y=\left(Y_{1}, \ldots, Y_{p}\right)^{\top} \in\{0,1\}^{p}$ be a vector of Bernoulli rvs.
- The probability of observing a response pattern $y_{r}=\left(y_{r 1}, \ldots, y_{r p}\right)^{\top}$, for any $r=1, \ldots, R:=2^{p}$, is given by the joint distribution

$$
\begin{equation*}
\pi_{r}=\mathrm{P}\left(\boldsymbol{Y}=\boldsymbol{y}_{r}\right)=\mathrm{P}\left(Y_{1}=y_{r 1}, \ldots, Y_{p}=y_{r p}\right) \tag{1}
\end{equation*}
$$

Introduction (cont.)

- Let $Y=\left(Y_{1}, \ldots, Y_{p}\right)^{\top} \in\{0,1\}^{p}$ be a vector of Bernoulli rvs.
- The probability of observing a response pattern $y_{r}=\left(y_{r 1}, \ldots, y_{r p}\right)^{\top}$, for any $r=1, \ldots, R:=2^{p}$, is given by the joint distribution

$$
\begin{equation*}
\pi_{r}=\mathrm{P}\left(\boldsymbol{Y}=\boldsymbol{y}_{r}\right)=\mathrm{P}\left(Y_{1}=y_{r 1}, \ldots, Y_{p}=y_{r p}\right) \tag{1}
\end{equation*}
$$

- Suppose $h=1, \ldots, N$ observations of $Y=\boldsymbol{y}^{(h)}$ are recorded, and each unit h is assigned a (normalised) survey weight w_{h} with $\sum_{h} w_{h}=N$.
- Let $\hat{p}_{r}=\hat{N}_{r} / N$ be the r th entry of the R-vector of proportions \hat{p} with

$$
\begin{equation*}
\hat{N}_{r}=\sum_{h} w_{h}\left[y^{(h)}=y_{r}\right] \tag{2}
\end{equation*}
$$

Introduction (cont.)

- Let $Y=\left(Y_{1}, \ldots, Y_{p}\right)^{\top} \in\{0,1\}^{p}$ be a vector of Bernoulli rvs.
- The probability of observing a response pattern $y_{r}=\left(y_{r 1}, \ldots, y_{r p}\right)^{\top}$, for any $r=1, \ldots, R:=2^{p}$, is given by the joint distribution

$$
\begin{equation*}
\pi_{r}=\mathrm{P}\left(Y=y_{r}\right)=\mathrm{P}\left(Y_{1}=y_{r 1}, \ldots, Y_{p}=y_{r p}\right) \tag{1}
\end{equation*}
$$

- Suppose $h=1, \ldots, N$ observations of $Y=y^{(h)}$ are recorded, and each unit h is assigned a (normalised) survey weight w_{h} with $\sum_{h} w_{h}=N$.
- Let $\hat{p}_{r}=\hat{N}_{r} / N$ be the r th entry of the R-vector of proportions \hat{p} with

$$
\begin{equation*}
\hat{N}_{r}=\sum_{h} w_{h}\left[y^{(h)}=y_{r}\right] . \tag{2}
\end{equation*}
$$

- Denote by $\boldsymbol{\pi}$ the R-vector of joint probabilities. It is widely known (Agresti, 2012) for IID samples that

$$
\begin{equation*}
\sqrt{N}(\hat{\boldsymbol{p}}-\boldsymbol{\pi}) \xrightarrow{\mathrm{D}} \mathrm{~N}_{R}(\mathbf{0}, \boldsymbol{\Sigma}), \tag{3}
\end{equation*}
$$

as $N \rightarrow \infty$, where $\boldsymbol{\Sigma}=\operatorname{diag}(\boldsymbol{\pi})-\boldsymbol{\pi} \boldsymbol{\pi}^{\top}$. This also works under complex sampling (Fuller, 2011), but $\boldsymbol{\Sigma}$ may take a different form.

Parametric models

- E.g. binary factor model with underlying variable approach (s.t. constraints)

$$
\begin{gather*}
Y_{i}= \begin{cases}1 & Y_{i}^{*}>\tau_{i} \\
0 & Y_{i}^{*} \leq \tau_{i}\end{cases} \tag{4}\\
\boldsymbol{Y}^{*}=\Lambda \boldsymbol{\eta}+\boldsymbol{\epsilon} \\
\boldsymbol{\eta} \sim \mathrm{N}_{q}(\mathbf{0}, \boldsymbol{\Psi}), \boldsymbol{\epsilon} \sim \mathrm{N}_{p}\left(\mathbf{0}, \Theta_{\epsilon}\right)
\end{gather*}
$$

- The log-likelihood for $\boldsymbol{\theta}^{\top}=(\lambda, \rho, \tau)$ is

$$
\begin{equation*}
\log L(\theta \mid Y)=\sum_{r=1}^{R} \hat{N}_{r} \log \pi_{r}(\theta) \tag{5}
\end{equation*}
$$

where $\pi_{r}(\boldsymbol{\theta})=\int \phi_{p}\left(\boldsymbol{y}^{*} \mid \mathbf{0}, \Lambda \Psi \Lambda^{\top}+\Theta_{\epsilon}\right) \mathrm{d} \boldsymbol{y}^{*}$.

- FIML may be difficult (high-dimensional integral; perfect separation).

Pairwise likelihood estimation

- For a pair of variables Y_{i} and $Y_{j}, i, j=1, \ldots, p$ and $i<j$, define

$$
\begin{equation*}
\pi_{y_{i} y_{j}}^{(i j)}(\theta)=\mathrm{P}_{\theta}\left(Y_{i}=y_{i}, Y_{j}=y_{j}\right), \quad y_{i}, y_{j} \in\{0,1\} \tag{6}
\end{equation*}
$$

There are $\tilde{R}=4 \times\binom{ p}{2}$ such probabilities, with $\sum_{y_{i}, y_{j}} \pi_{y_{i} y_{j}}^{(i j)}(\theta)=1$.

Pairwise likelihood estimation

- For a pair of variables Y_{i} and $Y_{j}, i, j=1, \ldots, p$ and $i<j$, define

$$
\begin{equation*}
\pi_{y_{i} y_{j}}^{(i j)}(\theta)=P_{\theta}\left(Y_{i}=y_{i}, Y_{j}=y_{j}\right), \quad y_{i}, y_{j} \in\{0,1\} \tag{6}
\end{equation*}
$$

There are $\tilde{R}=4 \times\binom{ p}{2}$ such probabilities, with $\sum_{y_{i}, y_{j}} \pi_{y_{i} y_{j}}^{(i j)}(\theta)=1$.

- The pairwise log-likelihood takes the form (Katsikatsou et al., 2012)

$$
\begin{equation*}
\log \mathcal{L}_{\mathrm{P}}(\boldsymbol{\theta} \mid \boldsymbol{Y})=\sum_{i<j} \sum_{y_{i}} \sum_{y_{j}} \hat{N}_{y_{i} y_{j}}^{(i j)} \log \pi_{y_{i} y_{j}}^{(i j)}(\boldsymbol{\theta}) \tag{7}
\end{equation*}
$$

where $\hat{N}_{y_{i} y_{j}}^{(i j)}=\sum_{h} w_{h}\left[y_{i}^{(h)}=y_{i}, y_{j}^{(h)}=y_{j}\right]$.

Pairwise likelihood estimation

- For a pair of variables Y_{i} and $Y_{j}, i, j=1, \ldots, p$ and $i<j$, define

$$
\begin{equation*}
\pi_{y_{i} y_{j}}^{(i j)}(\theta)=\mathrm{P}_{\theta}\left(Y_{i}=y_{i}, Y_{j}=y_{j}\right), \quad y_{i}, y_{j} \in\{0,1\} \tag{6}
\end{equation*}
$$

There are $\tilde{R}=4 \times\binom{ p}{2}$ such probabilities, with $\sum_{y_{i}, y_{j}} \pi_{y_{i} y_{j}}^{(i j)}(\theta)=1$.

- The pairwise log-likelihood takes the form (Katsikatsou et al., 2012)

$$
\begin{equation*}
\log \mathcal{L}_{\mathrm{P}}(\theta \mid Y)=\sum_{i<j} \sum_{y_{i}} \sum_{y_{j}} \hat{N}_{y_{i} y_{j}}^{(i j)} \log \pi_{y_{i} y_{j}}^{(i j)}(\theta) \tag{7}
\end{equation*}
$$

where $\hat{N}_{y_{i} y_{j}}^{(i j)}=\sum_{h} w_{h}\left[y_{i}^{(h)}=y_{i}, y_{j}^{(h)}=y_{j}\right]$.

- Let $\hat{\boldsymbol{\theta}}_{\mathrm{PL}}=\arg \max _{\boldsymbol{\theta}} \mathcal{L}_{\mathrm{P}}(\boldsymbol{\theta} \mid \boldsymbol{Y})$. Under certain regularity conditions,

$$
\begin{equation*}
\sqrt{N}\left(\hat{\boldsymbol{\theta}}_{\mathrm{PL}}-\boldsymbol{\theta}\right) \xrightarrow{D} \mathrm{~N}_{m}\left(\mathbf{0},\left\{\mathcal{H}(\boldsymbol{\theta}) \mathcal{J}(\boldsymbol{\theta})^{-1} \mathcal{H}(\boldsymbol{\theta})\right\}^{-1}\right) \tag{8}
\end{equation*}
$$

where (Varin et al., 2011)

- $\mathcal{H}(\boldsymbol{\theta})=-\mathrm{E} \nabla^{2} \log \mathcal{L}_{\mathrm{P}}(\boldsymbol{\theta} \mid \boldsymbol{Y})$ is the sensitivity matrix; and
- $\mathcal{J}(\boldsymbol{\theta})=\operatorname{Var}\left(\nabla \log \mathcal{L}_{\mathrm{P}}(\boldsymbol{\theta} \mid \boldsymbol{Y})\right)$ is the variability matrix.

Introduction

Limited information GOF tests

Goodness-of-fit (GOF)

- GOF tests are usually constructed by inspecting the fit of the joint probabilities $\hat{\pi}_{r}:=\pi_{r}(\hat{\boldsymbol{\theta}})$.
- E.g.
- LR: $X^{2}=2 N \sum_{r} \hat{p}_{r} \log \left(\hat{p}_{r} / \hat{\pi}_{r}\right)$;
- Pearson: $X^{2}=N \sum_{r}\left(\hat{p}_{r}-\hat{\pi}_{r}\right)^{2} / \hat{\pi}_{r}$,

These tests are asymptotically distributed as chi square.

- Likely to face sparsity issues (small or zero cell counts) which distort the approximation to the chi square.

Multivariate
Bernoulli Data

Response
Patterns

Lower-order residuals

Limited information GOF tests

- We show, via usual linearisation arguments, that as $N \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{N} \hat{e}_{2}=\sqrt{N} \boldsymbol{T}_{2} \hat{\boldsymbol{e}} \xrightarrow{\mathrm{D}} \mathrm{~N}_{S}\left(0, \Omega_{2}\right), \tag{9}
\end{equation*}
$$

where $\Omega_{2}=\left(\boldsymbol{I}-\boldsymbol{\Delta}_{2} \mathcal{H}(\boldsymbol{\theta})^{-1} \boldsymbol{B}(\boldsymbol{\theta})\right) \boldsymbol{\Sigma}_{2}\left(\boldsymbol{I}-\boldsymbol{\Delta}_{2} \mathcal{H}(\boldsymbol{\theta})^{-1} \boldsymbol{B}(\boldsymbol{\theta})\right)^{\top}$, and

- $\Sigma_{2}=\boldsymbol{T}_{2} \Sigma T_{2}^{\top}$ (uni \& bivariate multinomial matrix);
- $\boldsymbol{\Delta}_{2}=\boldsymbol{T}_{2}\left(\partial \pi_{r}(\boldsymbol{\theta}) / \partial \theta_{k}\right)_{r, k}$ (uni \& bivariate derivatives);
- $\mathcal{H}(\boldsymbol{\theta})$ is the sensitivity matrix; and
- $\boldsymbol{B}(\boldsymbol{\theta})$ is some transformation matrix dependent on $\boldsymbol{\theta}$.

Limited information GOF tests

- We show, via usual linearisation arguments, that as $N \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{N} \hat{e}_{2}=\sqrt{N} T_{2} \hat{e} \xrightarrow{D} N_{S}\left(0, \Omega_{2}\right), \tag{9}
\end{equation*}
$$

where $\Omega_{2}=\left(I-\Delta_{2} \mathcal{H}(\theta)^{-1} B(\theta)\right) \Sigma_{2}\left(I-\Delta_{2} \mathcal{H}(\theta)^{-1} B(\theta)\right)^{\top}$, and

- From this, LIGOF test statistics generally take the quadratic form

$$
\begin{equation*}
X^{2}=N \hat{\boldsymbol{e}}_{2}^{\top} \hat{\bar{\Xi}}_{2} \hat{e}_{2} \tag{10}
\end{equation*}
$$

where $\equiv(\hat{\boldsymbol{\theta}})=: \hat{\overline{\mathrm{B}}} \stackrel{\mathrm{P}}{\mathrm{B}}$ is some $S \times S$ weight matrix. Generally, this is a chi square variate whose d.f. is either known or has to be estimated using moment matching (Maydeu-Olivares \& Joe, 2005) or Rao and Scott (1979, 1981, 1984) adjustments.

Weight matrices

$$
\begin{gathered}
X^{2}=N \hat{e}_{2}^{\top} \hat{\overline{\underline{e}} \hat{e}_{2}} \\
\sqrt{N} \hat{e}_{2} \approx N_{S}\left(0, \Omega_{2}\right)
\end{gathered}
$$

	Name	\equiv	D.f.	Notes
1	Wald	Ω_{2}^{+}	$S-m$	Possible rank issues
2	Wald (VCF)	$\equiv \Omega_{2} \equiv$	$S-m$	Need not est. Ω_{2}
3	Wald (Diag.)	$\operatorname{diag}\left(\Omega_{2}\right)^{-1}$	est.	Moment match, order 3
4	Wald (Diag., RS)	$\operatorname{diag}\left(\Omega_{2}\right)^{-1}$	est.	Rao-Scott, order 2
5	Pearson	$\operatorname{diag}\left(\boldsymbol{\pi}_{2}(\theta)\right)^{-1}$	est.	Moment match, order 3
6	Pearson (RS)	$\operatorname{diag}\left(\boldsymbol{\pi}_{2}(\boldsymbol{\theta})\right)^{-1}$	est.	Rao-Scott, order 2

1-Reiser (1996); 2-Maydeu-Olivares and Joe (2005, 2006).

Introduction

Limited information GOF tests

Simulations

Conclusions

Setup

- $N \in\{500,1000,2000,3000\}$ data were generated from a binary factor model with the following true parameter values:
- Loadings: $\boldsymbol{\lambda}=(0.8,0.7,0.47,0.38,0.34, \ldots)$
- Factor correlations: $\rho=0.3$ or $\rho=(0.2,0.3,0.4)$
- Thresholds: $\boldsymbol{\tau}=(-1.43,-0.55,-0.13,-0.82,-1.13, \ldots)$
- Five scenarios considered

1. 1 factor, 5 variables (1 F 5 V)
2. 1 factor, 8 variables (1 F 8 V)
3. 1 factor, 15 variables (1 F 15 V)
4. 2 factor, 10 variables (2 F 10 V)
5. 3 factor, 15 variables (3 F 15 V)

- For power analyses, models are intentionally misspecified by adding an extra, unaccounted for, latent variable in each scenario.
- Experiments repeated a total of $B=1000$ times.

Complex design

Simulate a population of 1 e 6 students clustered within classrooms and stratified by school type (correlating with abilities).

$$
\text { Response } 001 \quad 1 \quad-\text { Pop. Avg. }
$$

Multi-stage sampling: Sample n_{S} schools per strata via SRS, then sample 1 classroom via SRS, then select all students in classroom.

Other designs can be considered, e.g. cluster sampling or single-stage samples

Results

SRS type I error rates ($\alpha=5 \%$)

Results

SRS power analysis ($\alpha=5 \%$)

- Wald - WaldVCF - WaldDiag,MM3 - WaldDiag,RS2 - Pearson,MM3 - Pearson,RS2

Results

Complex type I error rates ($\alpha=5 \%$)

Results

Complex power analysis ($\alpha=5 \%$)

Introduction

Limited information GOF tests

Simulations

Conclusions

Conclusions

- Pairwise likelihood estimation alleviates some issues associated with the UV approach in binary factor models.
- Sparsity impairs the dependability of GOF tests but are circumvented by considering lower order statistics.
- Wald-type and Pearson-type tests are investigated under simple random and complex sampling.
- SRS: Wald and Pearson type tests generally perform as expected, but not the Diagonal Wald test.
- Complex: Traditional Wald tests tend to give poor results, but our proposed Diagonal Wald test is more dependable.

Thanks!

Visit haziqj.ml/lavaan.bingof for further details and to try out our R package to implement these LIGOF tests.

References

Agresti, A. (2012). Categorical data analysis (Vol. 792). John Wiley \& Sons.
Fuller, W. A. (2011). Sampling statistics. John Wiley \& Sons.
Katsikatsou, M., Moustaki, I., Yang-Wallentin, F., \& Jöreskog, K. G. (2012). Pairwise likelihood estimation for factor analysis models with ordinal data. Computational Statistics \& Data Analysis, 56(12), 4243-4258.
Maydeu-Olivares, A., \& Joe, H. (2005).Limited-and full-information estimation and goodness-of-fit testing in 2 n contingency tables: A unified framework. Journal of the American Statistical Association, 100(471), 1009-1020.
Maydeu-Olivares, A., \& Joe, H. (2006).Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71(4), 713.

References

Rao, J. N. K., \& Scott, A. J. (1979).Chi-squared tests for analysis of categorical data from complex surveys. Proceedings of the American Statistical Association, section on Survey Research Methods, 58-66.
Rao, J. N. K., \& Scott, A. J. (1981).The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness of fit and independence in two-way tables. Journal of the American Statistical Association, 76(374), 221-230.
Rao, J. N. K., \& Scott, A. J. (1984).On chi-squared tests for multiway contingency tables with cell proportions estimated from survey data. The Annals of Statistics, 46-60.
Reiser, M. (1996).Analysis of residuals for the multinomial item response model. Psychometrika, 61, 509-528.
Varin, C., Reid, N., \& Firth, D. (2011).An overview of composite likelihood methods. Statistica Sinica, 5-42.

