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Introduction

Context
Employ latent variable models (factor models) to binary data Y1; : : : ; Yp
collected from surveys via simple random or complex sampling.

(Psychometrics) 
Behavioural checklist

(Education) 
Maths achievement test

(Sociology) 
Intergenerational support
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Introduction (cont.)
� Let Y = (Y1; : : : ; Yp)

> 2 f0; 1gp be a vector of Bernoulli rvs.
� The probability of observing a response pattern yr = (yr1; : : : ; yrp)

>,
for any r = 1; : : : ; R := 2p, is given by the joint distribution

�r = P(Y = yr ) = P(Y1 = yr1; : : : ; Yp = yrp): (1)

� Suppose h = 1; : : : ; N observations of Y = y (h) are recorded, and each
unit h is assigned a (normalised) survey weight wh with

∑
h wh = N.

� Let p̂r = N̂r=N be the r th entry of the R-vector of proportions p̂ with

N̂r =
∑
h

wh[y
(h) = yr ]: (2)

� Denote by � the R-vector of joint probabilities. It is widely known
(Agresti, 2012) for IID samples that

p
N(p̂ � �)

D�! NR(000;���); (3)
as N !1, where ��� = diag(�)� ��>. This also works under
complex sampling (Fuller, 2011), but ��� may take a different form.
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Parametric models

ε1 ε2 ε3 ε4 ε5

ε6 ε7 ε8 ε9 ε10

τ3

τ10τ9τ7τ6 τ8

τ5τ4τ2τ1

λ9
λ10λ7

λ5
λ4

η1

η2

Y1 Y2 Y3 Y4 Y5

Y6 Y7 Y8 Y9 Y10

λ1
λ2 λ3

ρ12

λ6
λ8

� E.g. binary factor model with underlying
variable approach (s.t. constraints)

Yi =

{
1 Y �i > �i

0 Y �i � �i

Y � = ���� + �

� � Nq(000;			); � � Np(000;����)

(4)

� The log-likelihood for �> = (�; �; � ) is

logL(� j Y ) =
R∑
r=1

N̂r log�r (�) (5)

where �r (�) =
∫
�p(y

� j 000;���			���> +����) dy
�.

� FIML may be difficult (high-dimensional
integral; perfect separation).
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Pairwise likelihood estimation
� For a pair of variables Yi and Yj , i ; j = 1; : : : ; p and i < j , define

�
(i j)
yiyj

(�) = P�(Yi = yi ; Yj = yj); yi ; yj 2 f0; 1g: (6)

There are ~R = 4� (
p
2

)
such probabilities, with

∑
yi ;yj

�
(i j)
yiyj

(�) = 1.

� The pairwise log-likelihood takes the form (Katsikatsou et al., 2012)

logLP(� j Y ) =
∑
i<j

∑
yi

∑
yj

N̂
(i j)
yiyj

log�
(i j)
yiyj

(�); (7)

where N̂
(i j)
yiyj

=
∑

h wh[y
(h)
i = yi ; y

(h)
j = yj ].

� Let �̂PL = argmax� LP(� j Y ). Under certain regularity conditions,
p
N(�̂PL � �)

D�! Nm

(
000;

{H(�)J (�)�1H(�)}�1) ; (8)

where (Varin et al., 2011)

� H(�) = �Er2 logLP(� j Y ) is the sensitivity matrix; and
� J (�) = Var

(
r logLP(� j Y )

)
is the variability matrix.
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Goodness-of-fit (GOF)
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� GOF tests are usually constructed by
inspecting the fit of the joint
probabilities �̂r := �r (�̂).

� E.g.
� LR: X2 = 2N

∑
r p̂r log(p̂r=�̂r );

� Pearson: X2 = N
∑

r (p̂r � �̂r )
2=�̂r ,

These tests are asymptotically
distributed as chi square.

� Likely to face sparsity issues (small or
zero cell counts) which distort the
approximation to the chi square.
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Lower-order residuals

10011

10111

11011

11101

11111

All

(N x p)

y5

y45

y4

y35

y34

y3

y25

y24

y23

y2
y15

y14

y13

y12

y1

Multivariate
Bernoulli Data

Response
Patterns

Bivariate
Moments

Univariate
Moments

Let S = p(p + 1)=2.
Define T2 : R

R ! R
S s.t.

(p̂ � �̂)︸ ︷︷ ︸
ê

7! (p̂2 � �̂2)︸ ︷︷ ︸
ê2

.
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Limited information GOF tests
� We show, via usual linearisation arguments, that as N !1,

p
Nê2 =

p
NT2ê

D�! NS(000;


2); (9)

where 


2 =
(
I � ���2H(�)�1B(�)

)
���2

(
I � ���2H(�)�1B(�)

)>, and
� ���2 = T2���T

>

2
(uni & bivariate multinomial matrix);

� ���2 = T2
(
@�r (�)=@�k

)
r;k

(uni & bivariate derivatives);
� H(�) is the sensitivity matrix; and
� B(�) is some transformation matrix dependent on �.

� From this, LIGOF test statistics generally take the quadratic form

X2 = Nê>2 �̂��ê2; (10)

where ���(�̂) =: �̂��
P�! ��� is some S � S weight matrix. Generally, this is

a chi square variate whose d.f. is either known or has to be estimated
using moment matching (Maydeu-Olivares & Joe, 2005) or Rao and
Scott (1979, 1981, 1984) adjustments.
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Weight matrices

X2 = Nê>2 �̂��ê2p
Nê2 � NS(000;


2)

Name ��� D.f. Notes
1 Wald 


+

2 S �m Possible rank issues

2 Wald (VCF) ���


2��� S �m Need not est. 


2

3 Wald (Diag.) diag(


2)
�1 est. Moment match, order 3

4 Wald (Diag., RS) diag(


2)
�1 est. Rao-Scott, order 2

5 Pearson diag(�2(�))
�1 est. Moment match, order 3

6 Pearson (RS) diag(�2(�))
�1 est. Rao-Scott, order 2

1–Reiser (1996); 2–Maydeu-Olivares and Joe (2005, 2006).
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Setup

� N 2 f500; 1000; 2000; 3000g data were generated from a binary
factor model with the following true parameter values:
� Loadings: � = (0:8; 0:7; 0:47; 0:38; 0:34; : : : )

� Factor correlations: � = 0:3 or � = (0:2; 0:3; 0:4)

� Thresholds: � = (�1:43;�0:55;�0:13;�0:82;�1:13; : : : )

� Five scenarios considered
1. 1 factor, 5 variables (1F 5V)
2. 1 factor, 8 variables (1F 8V)
3. 1 factor, 15 variables (1F 15V)
4. 2 factor, 10 variables (2F 10V)
5. 3 factor, 15 variables (3F 15V)

� For power analyses, models are intentionally misspecified by adding an
extra, unaccounted for, latent variable in each scenario.

� Experiments repeated a total of B = 1000 times.
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Complex design

Simulate a population of 1e6 students clustered within classrooms and
stratified by school type (correlating with abilities).
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Multi-stage sampling: Sample nS schools per strata via SRS, then
sample 1 classroom via SRS, then select all students in classroom.

Other designs can be considered, e.g. cluster sampling or single-stage samples
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Results
SRS type I error rates (� = 5%)
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Results
SRS power analysis (� = 5%)
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Results
Complex type I error rates (� = 5%)
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Results
Complex power analysis (� = 5%)
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Conclusions

� Pairwise likelihood estimation alleviates some issues associated with
the UV approach in binary factor models.

� Sparsity impairs the dependability of GOF tests but are circumvented
by considering lower order statistics.

� Wald-type and Pearson-type tests are investigated under simple
random and complex sampling.
� SRS: Wald and Pearson type tests generally perform as expected, but

not the Diagonal Wald test.
� Complex: Traditional Wald tests tend to give poor results, but our

proposed Diagonal Wald test is more dependable.

Thanks!
Visit haziqj.ml/lavaan.bingof for further details and
to try out our R package to implement these LIGOF tests.
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