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Supplementary S1

Basic estimation concepts

Statistics concerns what can be learned from data (Davison, 2003). A statistical model
comprises of a probabilistic component which drives the data generative process, in ad-
dition to a systematic or deterministic component, which sets it apart from pure math-
ematical models. Real-valued observations y := {y1, . . . , yn} are treated as realisations
from an assumed probability distribution with parameters θ = (θ1, . . . , θp)

⊤ ∈ Θ ⊆ Rp.
The crux of statistical inference is to estimate θ given the observed values, so that
this optimised value may be used in the model to make deductions. We describe the
frequentist and Bayesian paradigms for parameter estimation.

S1.1 Maximum likelihood estimation

In the frequentist setting, the likelihood function, or simply likelihood, is a function of the
parameters θ which measures the plausibility of the parameter value given the observed
data to fit a statistical model. It is defined as the mapping θ 7→ p(y|θ), where p(y|θ) is
the probability density function (or in the case of discrete observations, the probability
mass function) of the modelled distribution of the observations.

It is logical to consider the parameter which provides the largest likelihood value,

θ̂ML = arg max
θ

p(y|θ). (S1.1)

The value θ̂ML is referred to as the maximum likelihood estimate for θ. For convenience,
the log-likelihood function L(θ) = log p(y|θ) is maximised instead; as the logarithm is a
monotonically increasing function, the maximiser of the log-likelihood function is exactly
the maximiser of the likelihood function itself.
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When ML estimates are unable to be found in closed-form, the maximisation problem
of (S1.1) requires iterative, numerical methods to find the maximum. These methods
are often gradient based, i.e. algorithms that make use of the gradient of the objec-
tive function to be optimised. Examples include Newton’s method, Fisher’s scoring,
quasi-Newton methods, gradient descent, and conjugate gradient methods. As the name
suggests, these methods require evaluation of gradients or approximate gradients, and
in some cases, the Hessian. Depending on the situation, gradients or Hessians can be
expensive or inconvenient to compute or approximate. In cases of multi-modality of the
objective function, the algorithms can potentially converge to a local optima, as it is
known that the algorithms are quite sensitive to starting locations.

Besides invariance, the ML estimate comes with the attractive limiting property
√
n(θ̂ML − θtrue)

dist.−−→ Np

(
0, I(θ)−1

)
(Casella and R. L. Berger, 2002) as sample size

n→∞, where I(θ) is the Fisher information for θ. Other asymptotic properties of the
ML estimate include consistency, i.e. P(∥θ̂ML − θtrue∥ > ϵ)

prob.−−−→ 0 for any ϵ > 0, and
efficiency, i.e. it achieves the Cramér-Rao lower bound Var(θML) ≥ I(θ)−1.

As the likelihood measures the plausibility of a parameter value given the data, it can
be used to compare two competing models. Let Θ0 = {θ | θd+1 = θd+1,0, . . . , θp = θp,0}
be the set of parameters with restrictions on the last d components of θ. The likelihood
ratio test statistic for testing the null hypothesis H0 : θ ∈ Θ0 against the alternative
H1 : θ /∈ Θ0 is

λ = −2 log
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
= −2

(
logL(θ̂0)− logL(θ̂)

)
, (S1.2)

where θ̂0 = arg maxθ∈Θ0
log p(y|θ). Wilks’ theorem states that λ has an asymptotic chi-

squared distribution with degrees of freedom equal to the number of restrictions imposed
(or rather, the difference in dimensionality of Θ and Θ0). This gives a convenient way
of comparing nested models.

As a remark, models with more parameters will always have higher, or similar, log-
likelihood, than models with fewer parameters, because the model has a better ability
to fit the data with more free parameters. In a linear regression setting, this relates to
overfitting: a linear model with as many explanatory variables as there are data points
(n = p) will extrapolate every point in the data set. Overfitting is an oft cited problem
of maximum likelihood.

S1.2 Bayesian estimation

The Bayesian approach to estimating θ takes a different outlook, in that it supplements
what is already known from the data with additional information in the form of prior
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beliefs about the parameters. This usually means treating the parameters as random,
following some distribution dictated by a prior density p(θ). There are many ways
of categorising different types of priors. Broadly speaking, priors, and hence Bayesian
analysis (Kadane, 2011; Robert, 2007), can be either subjective or objective, with the
demonyms ‘subjectivists’ and ‘objectivists’ used to refer to those subscribing to each
respective principle. Subjectivists assert that probabilities are merely opinions, while
objectivists, in contrast, view probabilities as an extension of logic. In this regard,
objective Bayes seek to minimise the statistician’s contribution to inference and “let
data speak for itself”, while subjective Bayes does the opposite.

In either case, inference about the parameters are then performed using the posterior
density

p(θ|y) ∝
likelihood︷ ︸︸ ︷
p(y|θ) ×

prior︷︸︸︷
p(θ), (S1.3)

rather than through a single point estimate such as the ML estimate in the frequentist
case. The posterior density encapsulates the uncertainty surrounding the parameters θ

after observing the data y. The posterior mean

θ̃ =

∫
θp(θ|y)dθ (S1.4)

is normally taken to be the point estimate for θ, with its uncertainty usually reported in
the form of a credible interval: if θk is the k’th component of θ, then a (1− α)× 100%
credible interval for θk is (θlk, θ

u
k ), where P(θlk ≤ θk ≤ θuk ) = (1 − α) × 100%. Under

a quadratic loss function, θ̃ minimises the expected loss E[(θ − θtrue)2] (J. O. Berger,
1985, Sec. 4.4.2, Result 3), and is hence also viewed as the minimum mean squared error
(MMSE) estimator.

On a practical note, integration over the parameter space may be intractable, for
instance, the model consists of a large number of parameters for which we would like the
posterior mean of, or the marginalising integral cannot be found in closed form. Markov
chain Monte Carlo (MCMC) methods are the standard way of approximating such inte-
grals, by way of random sampling from the posterior. The sample {θ(1), . . . , θ(T )} is then
manipulated in a way to derive its approximation. In the case of the posterior mean,

Ê(θ|y) = 1

T

T∑
i=1

θ(t) (S1.5)

gives an approximation, and its (1 − α) × 100% credible interval can be approximated
using the lower α/2× 100% and upper (1− α/2)× 100% quantile of the sample.

The normalising constant is the marginal likelihood over the distribution of the pa-
rameters, p(y) =

∫
p(y|θ)p(θ)dθ. The quantity p(y) is also known as the model evidence,
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or simply, evidence. As its name suggests, model evidence is used as a measure of how
much support there is for a particular model. As such, it is used as a basis for model
comparison. Let p(y|M0) and p(y|M1) be the model evidence for two competing models
M0 and M1 respectively. Define the Bayes factor for comparing model M0 against an
alternative model M1 as

BF(M0,M1) =
p(y|M0)

p(y|M1)
. (S1.6)

Values of BF(M0,M1) < 1 would suggest that the data provides more evidence for model
M1 over M0.

Note that the model evidence is free of θ because all of the parameters have been
marginalised out, or put another way, considered in entirety and averaged over all possi-
ble values of θ drawn from its prior density. Thus, model comparison using Bayes factors
differs from the frequentist likelihood ratio comparison in that it does not depend on
any one particular set of values for the parameters.

S1.3 Maximum a posteriori estimation

One may also find the value of θ which maximises the posterior,

θ̂MAP = arg max
θ

p(y|θ)p(θ), (S1.7)

which is the mode of the posterior distribution. This quantity is known as the maximum a
posteriori (MAP) estimate. It is different from the ML estimate in that the maximisation
objective is augmented with with the prior density for θ. In this sense, MAP estimation
can be seen as regularisation of the ML estimation procedure, whereby a “penalty” term
is added to avoid overfitting.

MAP estimation is often criticised for not being representative of Bayesian methods.
That is, MAP estimation returns a point estimate with no apparent way of quantifying
its uncertainty. Furthermore, unlike ML estimators, MAP estimators are not invariant
under reparameterisation. If θ is a random variable with density p(θ), then the pdf of
ξ := g(θ), where g : θ 7→ g(θ) is a one-to-one transformation, is

pξ(ξ) = pθ
(
g−1(ξ)

) ∣∣∣∣ d
dξ g

−1(ξ)

∣∣∣∣ . (S1.8)

The second term in (S1.8) is called the Jacobian (determinant). Therefore, a different pa-
rameterisation of θ will impact the location of the maximum because of the introduction
of the Jacobian into the optimisation objective (S1.7).
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S1.4 Empirical Bayes

The term empirical Bayes (Casella, 1985; Robbins, 1956) refers to a procedure in which
features of the prior is informed by the data. This is realised by parameterising the
prior by a hyperparameter η, i.e. θ ∼ p(θ|η). Values for the hyperparameter are clearly
important, because they appear in the posterior for θ:

p(θ|y) = p(y|θ)p(θ|η)
p(y|η) (S1.9)

To avoid the subjectivist’s approach of specifying values for η a priori, one instead turns
to the data for guidance. Information concerning η is contained in the marginal likeli-
hood p(y|η) =

∫
p(y|θ)p(θ|η)dθ. This paves the way for using the maximum marginal

likelihood estimate
η̂ = arg max

η
p(y|η) (S1.10)

in place of η in the equation of (S1.9). This procedure is also coined maximum likelihood
type-II (Bishop, 2006), and is commonly referred to as such in the machine learning
literature. It is also commonplace in statistics, especially in random-effects or latent
variable models which employ a maximum likelihood procedure such as EM algorithm.

As a remark, estimation of η itself can be made to conform to Bayesian philosophy,
i.e., by placing priors on it and inferring η through its posterior. Such a procedure is
referred to as Bayesian hierarchical modelling. A motivation for doing this is because
the ML estimate of η ignores any uncertainty in it. Of course, the hyperprior for η could
be parameterised by a hyper-hyperparameter, and itself have a prior, and so on and so
forth. Evidently the model is specified until such a point where there are parameters of
the model which are left unoptimised and must be specified in subjective manner (Beal,
2003).
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Supplementary S2

The EM algorithm

Often times, there are unobserved, random variables w = {w1, . . . , wn} that are assumed
to make up the data generative process, prescribed in the statistical model through
the joint pdf p(y,w|θ). Examples of models that include latent variables are plentiful:
Gaussian mixture models, latent class analysis, factor models, random coefficient models,
and so on. In order to obtain maximum likelihood (ML) estimates through a direct
maximisation of the likelihood, it is necessary to first marginalise out the latent variables,

p(y|θ) =
∫ p(y,w|θ)︷ ︸︸ ︷

p(y|w, θ)p(w|θ)dw, (S2.1)

and obtain the marginal likelihood. Note that the integral is replaced by a summation
over all possible values in the case of discrete latent variables w.

Direct maximisation of the marginal (log-)likelihood might not be favourable due to
intractability in obtaining ML solutions. The form of the marginal likelihood might
might not be conducive for closed-form estimates to be found, necessitating the use of
numerical, gradient-based methods which is subject to its own undesirable quirks. More-
over, when the evaluation of the (log-)likelihood, gradient and/or Hessian are expensive
to compute, then numerical methods are burdensome to execute.

It is usually the case that if the latent variables w were somehow known, estimation
would be made simpler. That is, the solution to arg maxθ log p(y,w|θ) can be obtained
in a simple manner. The expectation-maximisation algorithm (Dempster et al., 1977),
commonly known as the EM algorithm, is an iterative procedure which exploits the fact
that the so-called complete data likelihood is easier to work with. Correspondingly, in
EM terminology, the marginal likelihood is referred to as the incomplete data likelihood.
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We describe a derivation of both a general EM algorithm and an EM algorithm for
models whose data generative pdf belongs to an exponential family of pdfs. Interestingly,
the EM algorithm can be modified to obtain maximum a posteriori estimates or penalised
log-likelihood solutions. As a note, the EM algorithm is not an algorithm per se, in that
it does not provide exact instructions as to what the E- and M-steps should comprise of.
Rather, it is a generic device to obtain parameter estimates (McLachlan and Krishnan,
2007).

S2.1 Derivation of the EM algorithm

For want of an iterative procedure to obtain maximum likelihood estimates, we seek a
solution to

arg max
θ
{L(θ|y)− L(θ(t)|y) ≥ 0}, (S2.2)

where the solution to (S2.2) yields an improvement to the current t’th iteration of the
log-likelihood value L(θ(t)|y). Note that the objective function in (S2.2) forms an upper
bound for the quantity Q(θ|θ(t)), as shown below:

L(θ|y)− L(θ(t)|y) = log
∫

p(y|w, θ)p(w|θ) p(w|y, θ
(t))

p(w|y, θ(t))
dw− log p(y|θ(t))

≥
∫

p(w|y, θ(t)) log p(y|w, θ)p(w|θ)
p(w|y, θ(t))

dw (Jensen’s inequality)

− log p(y|θ(t))
∫

p(w|y, θ(t))dw

=

∫
p(w|y, θ(t)) log p(y|w, θ)p(w|θ)

p(w|y, θ(t))p(y|θ(t))
dw

=: Q(θ|θ(t)).

Evidently, to maximise L(θ|y), we can’t do any worse than maximising Q(θ|θ(t)) in θ.
Denote by θ(t+1) as the maximiser of Q(θ|θ(t)). Then,

θ(t+1) = arg max
θ

∫
p(w|y, θ(t)) log p(y|w, θ)p(w|θ)

p(w|y, θ(t))p(y|θ(t))
dw

= arg max
θ

∫
p(w|y, θ(t)) log p(y|w, θ)p(w|θ)dw

= arg max
θ

∫
p(w|y, θ(t)) log p(y,w|θ)dw

= arg max
θ

Ew
[
log p(w,y|θ)|y, θ(t)

]
We arrive at an iterative procedure summarised succintly as the following:
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Algorithm S1 EM algorithm
1: initialise θ(0) and t← 0
2: while not converged do
3: E-step: compute Q(θ|θ(t)) = Ew

[
log p(w,y|θ)|y, θ(t)

]
4: M-step: θ(t+1) ← arg maxθ Q(θ|θ(t))
5: t← t+ 1
6: end while

Notice that the log-likelihood function satisfies

L(θ|y) ≥ L(θ(t)|y) +Q(θ|θ(t)), (S2.3)

for which equality is achieved when θ = θ(t), since

Q(θ(t)|θ(t)) =
∫

p(w|y, θ(t)) log p(y|w, θ(t))p(w|θ(t))
p(w|y, θ(t))p(y|θ(t))

dw

=

∫
p(w|y, θ(t))

��������:0
log p(y,w|θ(t))

p(y,w|θ(t))
dw

= 0.

This implies that the EM algorithm improves the log-likelihood values at each iteration,
since

L(θ(t+1)|y)− L(θ(t)|y) ≥ Q(θ(t+1)|θ(t)) ≥ 0

and Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)) = 0 since θ(t+1) maximises Q(·|θ(t)).

The expectation in the E-step involves the conditional pdf p(w|y, θ(t)). Viewed
through a Bayesian lens, this is the posterior density of the latent variables using the
t’th iteration parameter values. The success of the E-step is predicated on the avail-
ability of the conditional pdf for the expectation. If not, approximations to the E-step
can be explored, for example using Monte Carlo methods (Wei and Tanner, 1990) or a
variational approximation (Beal, 2003).

The solution to the M-step usually, but not always, exists in closed form. Maximising
the Q function over all possible values of θ may not be feasible (McLachlan and Krishnan,
2007). In such situations, the generalised EM algorithm (as defined by Dempster et al.,
1977) requires only that θ(t+1) be chosen in a way that

Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)).

That is, θ(t+1) is chosen so as to increase the value of the Q function at its current
parameter value. As seen in the argument above, this requirement is sufficient for a
guaranteed increase in the log-likelihood function at each iteration.
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S2.2 Exponential family EM algorithm

Consider the density function p(·|θ) of the complete data z = {y,w}, which depends
on parameters θ = (θ1, . . . , θs)

⊤ ∈ Θ ⊆ Rs, belonging to an exponential family of
distributions. This density takes the form p(z|θ) = B(z) exp

(
⟨η(θ),T(z)⟩ − A(θ)

)
,

where η : Rs 7→ R is a link function, T(z) =
(
T1(z), . . . , Ts(z)

)⊤ ∈ Rs are the sufficient
statistics of the distribution, and ⟨·, ·⟩ is the usual Euclidean dot product. It is often
easier to work in the natural parameterisation of the exponential family distribution

p(z|η) = B(z) exp
(
⟨η,T(z)⟩ −A∗(η)

)
(S2.4)

by defining η :=
(
η1(θ), . . . , ηr(θ)

)
∈ E , and expA∗(η) =

∫
B(z) exp ⟨η,T(z)⟩dz

to ensure the density function normalises to one. As an aside, the set E :=
{
η =

(η1, . . . , ηs) |
∫

expA∗(η) < ∞
}

is called the natural parameter space. If dim E = r <

s = dimΘ, then the the pdf belongs to the curved exponential family of distributions. If
dim E = r = s = dimΘ, then the family is a full exponential family.

Assuming the latent w variables are observed and working with the natural param-
eterisation, then the complete maximum likelihood (ML) estimate for η is obtained by
solving

∂

∂η
log p(z|η) = T(z)− ∂

∂η
A∗(η) = 0. (S2.5)

Of course, the variable w are never observed, so the ML estimate for η can only be
informed from what is observed. Let p(y|η) =

∫
p(y,w|η)dw represent the marginal

density of the observations y. Now, the ML estimate for η is obtained by solving

∂

∂η
log p(y|η) = 1

p(y|η) ·
∂

∂η
p(y|η)

=
1

p(y|η) ·
∂

∂η

(∫
p(y,w|η)dw

)
=

1

p(y|η)

∫ (
∂

∂η
p(y,w|η)

)
dw

=
1

p(y|η)

∫ (
p(y,w|η) ∂

∂η
log p(y,w|η)

)
dw

=

∫ (
T(y,w)− ∂

∂η
A∗(η)

)
p(w|y,η)dw

= Ew
[
T(y,w)|y

]
− ∂

∂η
A∗(η) (S2.6)

equated to zero. Note that we are allowed to change the order of integration and dif-
ferentation provided the integrand is continuously differentiable. So the only difference
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between the first order condition of (S2.5) and that of (S2.6) is that the sufficient statis-
tics involving the unknown w are replaced by their conditional or posterior expectations.

A useful identity to know is that ∂
∂ηA

∗(η) = Ez[T(z)] (Casella and R. L. Berger,
2002, Thm. 3.4.2 & Exer. 3.32(a)), which can be expressed in terms of the original
parameters θ. As a consequence, solving for the ML estimate for θ from the FOC
equations (S2.6) is possible without having to deal with the derivative of A∗ with respect
to the natural parameters. Having said this, an analytical solution in θ may not exist,
because the relationship of θ could be implicit in the set of equations Ew

[
T(w,y)|y,θ

]
=

Ey,w [T(y,w)|θ]. One way around this is to employ an iterative procedure, as detailed
in Algorithm S2.

Algorithm S2 Exponential family EM
1: initialise θ(0) and t← 0
2: while not converged do
3: E-step: T̃(t+1)(y,w)← Ew

[
T(w,y)|y,θ(t)

]
4: M-step: θ(t+1) ← solution to T̃(t+1)(y,w) = Ey,w [T(y,w)|θ]
5: t← t+ 1
6: end while

To see how Algorithm S2 motivates the EM algorithm, consider the following argu-
ment. Recall that for the EM algorithm, the function Qt(η) = Ew[log p(y,w|η)|y,η(t)]

is maximised at each iteration t. For exponential families of the form (S2.4), the Qt

function turns out to be

Qt(η) = Ew
[
⟨η,T(z)⟩|y,η(t)

]
−A∗(η) + logB(z),

and this is maximised at the value of η satisfying

∂

∂η
Qt(η) = Ew

[
T(y,w)|y,η(t)

]
− ∂

∂η
A∗(η) = 0,

a similar condition to (S2.6) when obtaining ML estimate of η. Thus, Qt is maximised
by the solution to line 4 in Algorithm S2.

S2.3 Bayesian EM algorithm

A simple modification of the EM algorithm can be done to obtain maximum a posteriori
estimates, or maximum penalised likelihood estimates. Under a Bayesian framework, a
prior is assigned on the model parameters, θ ∼ p(θ). Recall that the MAP estimate is
obtained as the maximiser of the log-density log p(y|θ) + log p(θ).
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The EM algorithm works as before, but replaces the E-step with

Ew
[
log p(w,y|θ) + log p(θ)|y, θ(t)

]
= Q(θ|θ(t)) + log p(θ) (S2.7)

since log p(θ) has no terms involving the latent variables w. The M-step now maximises
(S2.7) with respect to θ, which includes the log prior density (or a penalty term). It would
seem that the regular EM algorithm maximises (S2.7) such that p(θ) ∝ const. is a diffuse
prior for θ. Beal and Ghahramani (2003) discuss a more Bayesian extension of EM, in
which the output of the so-called variational Bayes EM algorithm are (approximate)
posterior distributions of the parameters, rather than MAP estimates discussed here.
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Supplementary S3

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo had its beginnings in statistical physics, with the 1987 pa-
per by Duane et al., using what they called ‘Hybrid Monte Carlo’ in lattice models of
quantum theory. Their work merged the approaches of molecular dynamics and Markov
chain Monte Carlo methods. As an interesting side note, their method abbreviates also
to ‘HMC’, but throughout the statistical literature, it is more commonly referred to
by its more descriptive name Hamiltonian Monte Carlo. Incidentally, the use of HMC
started with applications to neural networks as early as 1996 (see Neal, 2011 for an ex-
cellent review of the subject matter). It was not until 2011 when active development of
the method, and in particular, software for for statistical applications began. The Stan
initiative (Carpenter et al., 2017) began in response to difficulties faced when performing
full Bayesian inference on multilevel generalised linear models. These difficulties mainly
involved poor efficiency in usual MCMC samplers, particularly due to high autocorrela-
tions in the posterior chains, which meant that many chains and many iterations were
required to get an adequate sample. It was a case of exhausting all possible algorithmic
remedies for existing samplers (Gibbs samplers, Metropolis samplers, etc.), and realising
that fundamentally not much improvement can be had unless a novel sampling technique
was discovered.

The basic idea behind HMC is to use Hamiltonian dynamics to propose new states
in the posterior sampling, rather than relying on random walks. If one were to un-
derstand and use the geometry of the posterior density to one’s benefit, then it should
be possible to generate new proposal states with high probabilities of acceptance and
move far away from the current state. Hamiltonian dynamics, like classical Newtonian
mechanics, provides a framework for modelling the motion of a body in space across
time t. Additionally, Hamiltonian dynamics concatenates the position vector x with its
momentum z, and the motion of x in d-dimensional space is then described through
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Hamilton’s equations
dx
dt =

∂H

∂z
and dz

dt = −∂H

∂x
, (S3.1)

where H = H(x, z) is called the Hamiltonian of the system. The Hamiltonian is an
operator which encapsulates the total energy of the system. In a closed system, one can
express the sum of operators corresponding to the kinetic energy K(p) and the potential
energy U(z) of the system

H(x, z) = K(z) + U(x). (S3.2)

Substituing (S3.2) into (S3.1), we get the system of partial differential equations (PDEs)

dx
dt =

∂

∂z
K(z) and dz

dt = − ∂

∂x
U(x). (S3.3)

To describe the evolution of
(
x(t), z(t)

)
from time t to t+T , it is necessary to discretise

time, and split T = Lϵ. The quantity L is known as the number of leapfrogs, and ϵ the
step size.

ϵ ϵ ϵ ϵ ϵ · · · ϵ
0 T

L times

The system of PDEs is solved using Euler’s method, or the more commonly used leapfrog
integration, which is a three-step process:

1. Half-step momentum. z(t+ ϵ/2) = z(t)− ϵ
2

∂
∂xU

(
x(t)

)
2. Full-step position. x(t+ ϵ) = x(t) + ϵ ∂

∂zK
(
z(t+ ϵ/2)

)
3. Half-step momentum. z(t+ ϵ) = z(t+ ϵ/2) = z(t)− ϵ

2
∂
∂xU

(
x(t)

)
in which steps 1–3 are repeated L times.

Having knowing the formula for how particles move in space, we can use this in-
formation to treat random points drawn from some probability density as “particles”.
Randomness of position and momentum are prescribed through probability densities on
each. Given some energy function E(θ) over states θ, the canonical distribution of the
states θ (otherwise known as the canonical ensemble) is given by the probability density
function

p(θ) ∝ exp
(
−E(θ)

kτ

)
,

where k is Boltzmann’s constant, τ is the absolute temperature of the system. The
Hamiltonian is one such energy function over states (x, z). By replacing E(θ) by (S3.2)
in the pdf above, we realise that the distribution for x and z are independent. The
system can be manipulated such that kτ = 1—in any case, these are constants which
can be absorbed into one of the terms in the pdf anyway.
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Using a quadratic kinetic energy function K(z) = z⊤M−1z/21, we find that the
probability density function for z is

p(z) ∝ exp
(
−1

2
z⊤M−1z

)
,

implying z ∼ Nd(0,M). Here, M = diag(m1, . . . ,md) is called the mass matrix, which
obviously serves as the variance for the randomly distributed z. As for the potential
energy, choose a function such that U(x) = − log p(x), implying p(x) ∝ exp

(
− U(x)

)
.

Here, p(x) represents the target density from which we wish to sample, for instance,
a posterior density of interest. Thus, to sample variables x from p(x), one artificially
introduces momentum variables z and sample jointly instead from p(x, z) = p(z)p(z),
and discarding z thereafter. The HMC algorithm is summarised in Algorithm S3.

Algorithm S3 Hamiltonian Monte Carlo
1: initialise x(0), z(0) and choose values for L, ϵ and M
2: for t = 1, . . . , T do
3: Draw z ∼ Nd(0,M) ▷ Perturb momentum
4: Move (x(t), z(t)) 7→ (x∗, z∗) using Hamiltonian dynamics ▷ Proposal state
5: Accept/reject proposal state, i.e. ▷ Metropolis update

(x(t+1), z(t+1))←

{
(x∗, z∗) w.p. min(1, A)

(x(t), z(t)) otherwise

where
A =

p(x∗, z∗)

(x(t), z(t))
= exp

(
H(x, z)−H(x(t), z(t))

)
6: end for
7: return Samples

{
x(1), . . . , x(T )

}
HMC is often times superior to standard Gibbs sampling, for a variety of reasons.

For one, conjugacy does not play any role in the efficiency of the HMC sampler, thus
freeing the modeller to choose more appropriate and more intuitive prior densities for
the parameters of the model. For another, the HMC sampler is designed to incite little
autocorrelations between samples, and thus increasing efficiency.

Several drawbacks do exist with the HMC sampler. Firstly, it is impossible to directly
sample from discrete distributions p(x). More concretely, HMC requires that the domain
of p(x) is continuous and that ∂ log p(x)/∂x is inexpensive to compute. To work around
this, one must reformulate the model by marginalising out the discrete variables, and
obtain them back later by separately sampling from their posteriors. Alternatively, a
Gibbs sampler specifically for the discrete variables could be augmented with the HMC
sampler. The other drawback of HMC is that there are many tuning parameters (leapfrog
L, step-size ϵ, mass matrix M , etc.) that is not immediately easy to perfect, at least not
to the novice user.
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Figure S3.1: A phase diagram schematic of HMC sampling in one-dimension. At step
0, initialise values for momentum and position. At step 1, simulate movement using
Hamiltonian dynamics, accept position and discard momentum. At step 2, perturb
momentum using a normal density, then repeat.
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The implementation of HMC by the programming language Stan, which interfaces
many other programming languages including R, Python, MATLAB, Julia, Stata and
Mathematica, is a huge step forward in computational Bayesian analysis. Stan takes the
liberty of performing all the tuning necessary, and the practitioner is left with simply
specifying the model. A vast library of differentiable probability functions are available,
with the ability to bring your own code as well. Development is very active and many
improvements and optimisations have been made since its inception.

1Thinking back to elementary mechanics, this is the familiar 1
2
mv2 formula for kinetic energy and

substituting in the identity z = mv, where m is the mass of the object, and v is its velocity.
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Supplementary S4

Variational inference

Consider a statistical model parameterised by θ = (θ1, . . . , θp)
⊤ for which we have obser-

vations y := {y1, . . . , yn}, but also some latent variables w. Typically, in such models,
there is a want to to evaluate the integral

I =

∫
p(y|w)p(w)dw, (S4.1)

Marginalising out the latent variables in (S4.1) is usually a precursor to obtaining a log-
likelihood function to be maximised in a frequentist setting, whereby there is an implicit
dependence on the model parameters in the evaluation of I. In Bayesian analysis, priors
are specified on the model parameters θ ∼ p(θ). By concatenating the latent variables
and model parameters to form w, the I corresponds to the marginal density for y, on
which the posterior depends.

In many instances, for one reason or another, evaluation of (S4.1) or is difficult, in
which case inference is halted unless a way of overcoming the intractability is found.
In this chapter, we discus variational inference (VI) as a means of approximating the
integral. The literature on variational inference is typically presented in a Bayesian light
(Bishop, 2006; Blei et al., 2017; Jordan et al., 1999), and as such, it is commonly known
as variational Bayes method. The main attraction from a Bayesian point of view is that
it provides a deterministic way of obtaining (approximate) posteriors, i.e. it does not
involve sampling from posteriors.

Variational inference can be used in conjunction with an EM algorithm, in which the
E-step is replaced with a variational E-step. This variational EM algorithm is used for
maximum likelihood learning, but can modified to obtain maximum a posteriori esti-
mates. In the works of (Beal, 2003; Beal and Ghahramani, 2003), the authors realised
that the EM algorithm can be extended easily to obtain posterior densities of the latent
variables and parameters if the statistical model is conjugate exponential family. They
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refer to this as the variational Bayes EM algorithm, but in fact this is really just vari-
ational inference in which the algorithm resembles an EM algorithm with clear E- and
M-steps.

We first briefly introduce variational methods for approximating the intractable in-
tegral, and this is usually considered a fully Bayesian treatment of the model. We then
describe variational EM, and provide a comparison of the two methods.

S4.1 A brief introduction to variational inference

The crux of variational inference is this: find a suitably close distribution function q(w)

that approximates the true posterior p(w|y), where closeness here is defined in the
Kullback-Leibler divergence sense,

DKL(q∥p) =
∫

log q(w)

p(w|y)q(w)dw.

Posterior inference is then conducted using q(w) in lieu of p(w|y). Advantages of this
method are that 1) it is fast to implement computationally (compared to MCMC); 2)
convergence is assessed simply by monitoring a single convergence criterion; and 3) it
works well in practice, as attested to by the many studies implementing VI.

Briefly, we present the motivation behind variational inference and the minimisation
of the KL divergence. Denote by q(·) some density function of w. One may show that
log marginal density, i.e. the log of the intractable integral (S2.1), holds the following
bound:

log p(y) = log p(y,w)− log p(w|y) (Bayes’ theorem)

=

∫ {
log p(y,w)

q(w)
− log p(w|y)

q(w)

}
q(w)dw (expectation both sides)

= L(q) + DKL(q∥p)

≥ L(q) (S4.2)

since the KL divergence is a non-negative quantity. The functional L(q) given by

L(q) =
∫

log p(y,w)

q(w)
q(w)dw

= Ew∼q[log p(y,w)] +H(q), (S4.3)

where H is the entropy functional, is known as the evidence lower bound (ELBO).
Evidently, the closer q is to the true p, the better, and this is achieved by maximising
L, or equivalently, minimising the KL divergence from p to q. Note that the bound
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(S4.2) achieves equality if and only if q(w) ≡ p(w|y), but of course the true form of
the posterior is unknown to us—see Section S4.2 for a discussion. Maximising L(q) or
minimising DKL(q∥p) with respect to the density q is a problem of calculus of variations,
which incidentally, is where variational inference takes its name. The astute reader
will realise that DKL(q||p) is impossible to compute, since one does not know the true
distribution p(w|y). Efforts are concentrated on maximising the ELBO instead.

Maximising L over all possible density functions q is not possible without consid-
ering certain constraints. Two such constraints are described. The first, is to make a
distributional assumption regarding q, for which it is parameterised by ν. For instance,
we might choose the closest normal distribution to the posterior p(w|y) in terms of KL
divergence. In this case, the task is to find optimal mean and variance parameters of a
normal distribution.

q(w; ν)

νinit

ν∗

p(w|y)

DKL(q∥p)

Figure S4.1: Schematic view of variational inference1. The aim is to find the closest dis-
tribution q (parameterised by a variational parameter ν) to p in terms of KL divergence
within the set of variational distributions, represented by the ellipse.

The second type of constraint, and the one considered in this thesis, is simply an
assumption that the approximate posterior q factorises into M disjoint factors. Partition
w into M disjoint groups w = (w[1], . . . , w[M ]). Note that each factor w[k] may be
multidimensional. Then, the structure

q(w) =
M∏
k=1

qk(w[k])

for q is considered. This factorised form of variational inference is known in the statistical
physics literature as the mean-field theory (Itzykson and Drouffe, 1991).

Remark S4.1. The choice of factorisation is completely arbitrary, although forcing a
factorisation also induces independence between the factors in the posterior, and this
may or may not be suitable for the problem at hand. Landing the correct choice of

1Reproduced from the talk by David Blei entitled “Variational Inference: Foundations and Innova-
tions”, 2017. URL: https://simons.berkeley.edu/talks/david-blei-2017-5-1.
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factorisation is rather experimental, as the aim is to balance tractability and model
misspeficication. In a model with both latent variables and random parameters (in a
Bayesian setting), then a good starting point would be to factorise the latent variables
and parameters.

Let us denote the distributions which minimise the Kullback-Leibler divergence (max-
imise the variational lower bound) by the use of tildes. The impact of the mean-field
factorisation on the ELBO is inspected:

L(q) =
∫
· · ·
∫

log p(y,w)∏M
k=1 qk(w)

m∏
k=1

{
qk(w[k])dw[k]

}
=

∫
· · ·
∫ (

log p(y,w)−
M∑
k=1

log qk(w)

)
M∏
k=1

{
qk(w[k])dw[k]

}
and rearranging slightly for terms involving the j’th component only, we get

L(q) =
∫
· · ·
∫ (

log p(y,w)− log qj(w[j]) + const.
)
qj(w[j])dw[j]

∏
k ̸=j

{
qk(w[k])dw[k]

}

=

∫ ( log p̃(y,w[j])+const.︷ ︸︸ ︷∫
· · ·
∫

log p(y,w)
∏
k ̸=j

{
qk(w[k])dw[k]

})
qj(w[j])dw[j]

−
∫

log qj(w[j])qj(w[j])dw[j] + const.

= −DKL(q[j]∥p̃) + const.

The task of maximising L is then equivalent to maximising −DKL(q[j]∥p̃), where p̃ is
defined in the overbrace of the second line in the equation above. Thus, for each w[k],
k = 1, . . . ,M , q̃k satisfies

log q̃k(w[k]) = E−k[log p(y,w)] + const. (S4.4)

where expectation of the joint log density of y and w is taken with respect to all of the
unknowns w, except the one currently in consideration w[k], under their respective q̃k

densities. For further details, refer to Bishop (2006, Eq. 10.9, p. 466).

In practice, rather than an explicit calculation of the normalising constant, one simply
needs to inspect (S4.4) to recognise it as a known log-density function, which is the
case when exponential family distributions are considered. That is, suppose that each
complete conditional p(w[k]|w−k,y), where w−k = {w[i] | i ̸= k}, follows an exponential
family distribution

p(w[k]|w−k,y) = B(w[k]) exp
(
⟨ζk(w−k,y), w[k]⟩ −A(ζk)

)
.
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Then, from (S4.4),

q̃(w[k]) ∝ exp
(
E−k

[
log p(w[k]|w−k,y)

])
= exp

(
logB(w[k]) + E⟨ζk(w−k,y), w[k]⟩ − E[A(ζk)]

)
∝ B(w[k]) exp E⟨ζξ(w−k,y), w[k]⟩

is also in the same exponential family. In situations where there is no closed form
expression for q̃, then one resorts to sampling methods such as a Metropolis random walk
to estimate quantities of interest. This stochastic step within a deterministic algorithm
has been explored before in the context of a Monte Carlo EM algorithm—see Meng and
Van Dyk (1997, Sec. 4) and references therein.

One notices that the optimal mean-field variational densities for each component are
coupled with one another, in the sense that the distribution q̃k depends on the moments
of the rest of the components w−k. For very simple problems, an exact solution for each
q̃k can be found, but usually, the way around this is to employ an iterative procedure.
The coordinate ascent mean-field variational inference (CAVI) algorithm cycles through
each of the distributions in turn, updating them in sequence starting with arbitrary
distributions as initial values.

Algorithm S4 The CAVI algorithm
1: initialise Variational factors qk(w[k])
2: while ELBO L(q) not converged do
3: for k = 1, . . . ,M do
4: q̃k(w[k])← const.× exp E−k [log p(y,w)] ▷ from (S4.4)
5: end for
6: L(q)← Ew∼

∏
k q̃k log p(y,w) +

∑m
k=1H

[
qk(w[k])

]
▷ Update ELBO

7: end while
8: return q̃(w) =

∏M
k=1 q̃j(w[k])

Each iteration of the CAVI brings about an improvement in the ELBO (hence the
name coordinate ascent). The algorithm terminates when there is no more significant
improvement in the ELBO, indicating a convergence of the CAVI. Blei et al. (2017) notes
that the ELBO is typically a non-convex function, in which case convergence may be to
(one of possibly many) local optima. A simple solution would be to restart the CAVI
at multiple initial values, and the solution giving the highest ELBO is the distribution
that is closest to the true posterior.
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S4.2 Variational EM algorithm

Consider again the latent variable setup described in Supplementary Chapter S2, in
which the goal is to maximise the (marginal) log-likelihood of the parameters θ of the
model, after integrating out the latent variables, as given by (S2.1). We will see how the
EM algorithm relates to minimising the KL divergence between a density q(w) and the
posterior of w, and connect this idea to variational methods.

DKL(q∥p)

L(q, θ)

log p(y|θ)

Figure S4.2: Illustration2 of the decomposition of the log-likelihood into L(q, θ) and
DKL(q∥p). The quantity L(q, θ) is a lower bound for the log-likelihood.

As we did in deriving (S4.2), we decompose the (marginal) log-likelihood as

log p(y|θ) = log p(y,w|θ)− log p(w|y, θ)

=

∫ {
log p(y,w|θ)

q(w)
− log p(w|y, θ)

q(w)

}
q(w)dw

= Ew∼q

[
log p(y,w|θ)

q(w)

]
︸ ︷︷ ︸

L(q,θ)

− Ew∼q

[
log p(w|y, θ)

q(w)

]
︸ ︷︷ ︸

−DKL(q∥p)

,

where q(w) is any density function over the latent variables. This decomposition is shown
in Figure S4.2. The interest is then to have a density function q(w) which is as close as
possible to the true posterior density p(y|w, θ) in the KL divergence sense. Since the KL
divergence is non-negative, minimising DKL(q∥p) is equivalent to maximising L(q, θ).

As a remark, the above line of thought should be familiar as it is the exact same one
made for variational inference. The twist here is that we will peruse a distribution which
tightens the lower bound L(q, θ) to the marginal log-likelihood, and this happens when
DKL(q∥p) is exactly zero, and this in turn happens when q is exactly the true posterior
density. That is, for some parameter value, θ = θ(t) say, the solution to

arg max
q

L(q, θ(t)) (S4.5)

2Reproduced from Bishop (2006, Fig. 9.11).

Variational inference250



is q(t+1)(w) = p(w|y, θ(t)), because

DKL(q∥p) = E
[

log p(w|y, θ(t))
p(w|y, θ(t))

]
= 0.

At this stage, we have the equality

log p(y|θ) = L(q(t+1), θ) (S4.6)

= Ew∼q(t+1)

[
log p(y,w|θ)

p(w|y, θ(t))

]
(S4.7)

= Ew∼q(t+1)

[
log p(y,w|θ)

]︸ ︷︷ ︸
Q(θ|θ(t))

− Ew∼q(t+1)

[
log p(w|y, θ(t))

]︸ ︷︷ ︸
−H(q(t+1))

, (S4.8)

The term on the left is recognised as the Q function of the E-step

Q(θ) = Q(θ|θ(t)) = Ew
(

log p(y,w|θ)
∣∣y, θ(t)) ,

while the term on the left is an entropy term which does not depend on θ. Thus,
minimising the KL divergence, or maximising the lower bound L with respect to q,
corresponds to the E-step in the EM algorithm.

Furthermore, since equality between the log-likelihood and the lower bound is achieved
after the E-step, increasing L(q(t+1), θ) with respect to θ is sure to bring about an in-
crease in the log-likelihood. That is, for any θ, we find that

log p(y|θ)− log p(y|θ(t)) = Q(θ|θ(t))−Q(θ(t)|θ(t)) + ∆ entropy

≥ Q(θ|θ(t))−Q(θ(t)|θ(t)).

because entropy differences are positive by Gibbs’ inequality. We see that maximising Q

with respect to θ (the M-step) brings about an improvement to the log-likelihood value.

To summarise, given initial values q(0) for the distribution and θ(0) for the parameters,
the EM algorithm is seen as iterating between

• E-step: q(t+1) ← arg maxq L(q, θ(t)), i.e., maximise L(q, θ) with respect to q, keep-
ing θ fixed. This is equivalent to minimising the KL divergence DKL(q∥p).

• M-step. θ(t+1) ← arg maxθ L(q(t+1), θ), i.e., maximise L(q, θ) with respect to θ,
keeping q(w) fixed.

When the true posterior distribution p(w|y) is not tractable, then the E-step becomes
intractable as well. By constraining the maximisation in the E-step to consider q be-
longing to a family of tractable densities, the E-step yields a variational approximation
q̃ to the true posterior. In Section S4.1, we saw that constraining q to be of a factorised
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form, then q̃ is a mean-field density. After a variational E-step, the M-step proceeds
as normal. This form of the EM is known as variational EM algorithm (VEM) (Beal,
2003). The variational EM algorithm can also be modified to obtain MAP estimates by
including the log prior density to the maximisation objective in the M-step.

Due to an approximation to the true posterior being used in the E-step, there is
no guarantee that the log-likelihood value will increase at each iteration. This is seen
pictorially in Section S4.2: since the bound on the log-likelihood is not tight, increasing
this bound will not necessarily cause an increase in log-likelihood value (Scenario C),
and even if it did, it may not give as much an increase as it would under the true
posterior density (Scenario B). Scenario A depicts an ideal case whereby the increase in
log-likelihood is as much as it would be if the true posterior density was used.

On a practical note, if the posterior density is intractable, then so is the marginal
likelihood, which means that we’re unable to determine convergence of the EM using
the log-likelihood. Instead, the lower bound L(q, θ) should be used, which monotonically
increases to a local optima (as in the CAVI algorithm).

S4.3 Comparing variational inference and variational EM

Variational inference is a fully Bayesian treatment of the model, for which the goal
is to obtain approximate posterior densities for all latent variables and parameters.
Variational EM algorithm on the other hand has the objective of obtaining ML or MAP
estimates of the parameters using an EM algorithm in which the E-step is replaced with
a variational E-step. In some cases, the CAVI algorithm can resemble an EM algorithm,
especially when there is a distinction between latent variables and parameters, and a
conjugate exponential family model is involved (Blei et al., 2017).

Variational inference can yield exactly similar point estimates as variational EM if
the approximate posterior is symmetric, e.g. a normal distribution. Under a normal
posterior, its mean is used as a point estimate, which coincides with the mode, which
is a MAP estimate, or in the case of diffuse priors, a ML estimate. However, since the
output of variational inference are posterior densities instead of a single point estimate,
one is able to obtain posterior standard deviations or credibility intervals about the
parameters, something which is not so straightforward under a variational EM or even
EM framework.

Derivation of the CAVI algorithm and ELBO for specific models is certainly more
tedious than the derivation of the variational EM algorithm. Often, quantities that are
required in the derivation include E(θ), E(θ2), E(θ−1), E(log θ) or any other moment of
some function of θ, where expectations are taken under the approximating q posterior

Variational inference252



EM (E-step)

DKL(q∥p)

log p(y|θold)

DKL(q
new∥p) = 0

L(qnew, θold)

VEM (E-step)

DKL(q
new∥p)

log p(y|θold)

L(qnew, θold)

EM (M-step)
DKL(q

new∥p)

L(qnew, θnew)
log p(y|θnew)

VEM (M-step)—scenario A

DKL(q
new∥p)

L(qnew, θnew)

log p(y|θnew)

EM (M-step)
DKL(q

new∥p)

L(qnew, θnew)
log p(y|θnew)

VEM (M-step)—scenario B

DKL(q
new∥p)

L(qnew, θnew)
log p(y|θnew)

EM (M-step)
DKL(q

new∥p)

L(qnew, θnew)
log p(y|θnew)

VEM (M-step)—scenario C

DKL(q
new∥p)

L(qnew, θnew)
log p(y|θnew)

Figure S4.3: Illustration of EM vs Variational EM (VEM) algorithms. Whereas the EM
guarantees an increase in log-likelihood value (red shaded region), the VEM does not.
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Table S4.1: Comparison between variational inference and variational EM.

Variational inference Variational EM

GOAL: Posterior densities for (w, θ) GOAL: ML/MAP estimates for θ

Variational approximation for latent
variables and parameters q(w, θ) ≈
p(w, θ|y)

Variational approximation for latent
variables only q(w) ≈ p(w|y)

Priors required on θ Priors not necessary for θ

Derivation can be tedious Derivation less tedious

Inference on θ through posterior den-
sity q(θ)

Asymptotic distribution of θ not well
studied; standard errors for θ not easily
obtained

Suited to conjugate exponential family
models: posteriors will be easily recog-
nisable

Suited to conjugate exponential family
models, but not necessary

density. For certain distributions q(θ) these quantities can be awkward to compute, and
may need approximating themselves.

The computational time and storage requirements of variational methods is virtually
the same as EM algorithm (Beal, 2003; Blei et al., 2017). Consider the mean-field
variational approximation. In variational inference or variational EM, the updating step
for the factors involve

q̃
(t+1)
k (w[k])← const.× exp

(
Ew−k∼q̃(t) [log p(y,w)]

)
, (S4.9)

for each of the factors of the approximate posterior q(w) =
∏M

k=1 qk(w[k]). In the EM
algorithm E-step, one obtains the Q function

Q(θ|θ(t)) = Ew
(

log p(y,w)|y, θ(t)
)
. (S4.10)

We can see that in both equations (S4.9) and (S4.10), there is a need to compute the
expectation of the joint log density, but the difference between the variational inference
and EM or variational EM lies in the M-step. In variational inference one seeks a
distribution, while in EM or variational EM one seeks a point estimate (posterior mode)
of this distribution.
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