
Chapter 6

Bayesian variable selection using
I-priors

Earlier in Section 4.1 (p. 102), we saw that model (1.1) subject to normal assumptions
(1.2), model assumptions A1–A3, and f belonging to the canonical RKHS of functions
over X ≡ Rp yields the standard multiple regression model

yi = α+

p∑
k=1

xikβk + ϵi

ϵi
iid∼ Nn(0, σ

2).

(6.1)

In this chapter, we use the notation σ2 = ψ−1 to denote the error variance. Furthermore,
an I-prior on the regression coefficient entails prescribing the following normal prior the
βk’s:

β := (β1, . . . , βp)
⊤ ∼ Np(0, κσ2X⊤X).

This follows from (4.1) after a slight reparameterisation of the RKHS scale parameter
κ 7→ λ2/σ4. Throughout this chapter, we assume that the columns of the design matrix
X = (X1, . . . , Xp) have been standardised, so that a single RKHS scale parameter is
sufficient for the p covariates.

The topic of interest for this chapter is model selection for linear regression models.
That is, from a set of p covariates or predictors {X1, . . . , Xp}, the task is to determine the
best choice of subset(s) of variables that should be included in a regression model used
to explain the variation in the response variable. As such, the term variable selection
is synonymous to model selection for linear regression models. Fundamental to this
notion of variable selection is an inherent belief in sparseness of the true data generative
process surrounding the response variable, i.e. not all of the variables need be used to
predict the response. Model selection is indeed a huge topic to cover fully. We broadly
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classify variable selection into three categories: 1) (pairwise) model comparison using
some criterion; 2) shrinkage to induce sparsity; and 3) Bayesian model selection. We
understand that different categorisations and hence categories of model selection exist
in the literature, but our focus is on the discussion of the three types as mentioned.

Model selection criteria, both from a frequentist and Bayesian standpoint, can ei-
ther be of a predictive nature (e.g. R2, mean squared error of prediction (MSEP), Cp

(Mallows, 1973), k-fold cross-validation MSEP, etc.), or be based on likelihood (e.g. like-
lihood ratios, Bayes factors, Akaike information criterion (AIC, Akaike, 1973), Bayesian
information criterion (BIC, Schwarz, 1978), etc.). Selecting a model based on either
of these criteria requires comparison of all 2p criteria, which is not feasible for large
p. Typically, these criteria are used in conjunction with stepwise procedures such as
forward-selection or backward-deletion to restrict attention to a smaller number of po-
tential subsets (George and McCulloch, 1993; Miller, 2002).

On the other hand, regularised least squares regression (ridge regression (Hoerl and
Kennard, 1970), Lasso (Tibshirani, 1996), or a convex combination of the two via elastic
nets (Zou and Hastie, 2005), etc.) provide additional information to the regression
model in order to provide a sparse solution to linear system of equations in β. These
methods are proven to be popular as they are fast and perform exceptionally well in
many situations, even in cases where p > n. Additionally, the Lasso produces solutions
for β which are exactly zero. However, the Lasso in general produces estimates which
are biased towards zero, are inconsistent, and have no valid standard errors (Friedman
et al., 2001; Kyung et al., 2010). Further criticisms of the Lasso include its inability
to select more than n predictors in a p > n situation, and poor performance when
multicollinearity exists among the covariates.

From a Bayesian perspective, regularisation is akin to placing priors on the βk’s
to shrink the effects of the βk’s: the ridge regression has a Bayesian interpretation of
placing normal priors on the regression coefficients, while for the Lasso, a Laplace or
double exponential prior (Park and Casella, 2008). The term adaptive shrinkage has
been used for the method in which hyperpriors are placed on the scale parameter of the
prior for the βk’s. The idea is to adaptively shape the prior depending on the importance
of the variable in the regression model. Bayesian shrinkage includes the task of specifying
tuning parameters. This could potentially affect chain mixing in a Markov chain Monte
Carlo method (MCMC) procedure, the estimation method that is commonly used.

True Bayesian model selection is probabilistic in nature: a priori, one assigns prob-
abilities over the set of models, and then after observing the data, posterior model
probabilities (PMPs) are used to discern which of the models was likeliest to have been
behind the data generative process of the observed responses. Of course, with large p,
calculation of all 2p posterior model probabilities to ascertain which is highest will be
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a challenge, if not impossible. But, as with most Bayesian applications, MCMC can be
applied as a practical means of overcoming this intractability. This stochastic approach
to variable selection was pioneered by George and McCulloch (1993), and studied by
others such as Dellaportas et al. (2002), Kuo and Mallick (1998), and Ntzoufras (2011).
Unlike shrinkage methods, Bayesian model selection is able to quantify the amount of
times a variable “enters the model” (inclusion probabilities), and thereby measuring its
worth as a predictor.

Note that, in addition to model probabilities and inclusion probabilities, estimates of
regression coefficients are obtained simultaneously in Bayesian variable selection. When
several competing models have high posterior probabilities, regression coefficients from
each model, or indeed any quantity of interest, may be combined and weighted by
their posterior model probabilities—a technique known as Bayesian model averaging
(Hoeting et al., 1999; Madigan and Raftery, 1994). Averaging over a set of models
takes into account the uncertainty surrounding model selection, which other standard
statistical procedures ignore upon selection of a single model from which to do inference.
It is known to be the case that predictive accuracy of the model-averaged quantity is
improved, as measured by a logarithmic scoring rule (Raftery et al., 1997).

Bayesian model selection is not without criticism, however. For complex models with
many predictors or samples, MCMC is slow and may mix poorly (O’Hara and Sillanpää,
2009). Often, there are a lot of tuning parameters that need to be set correctly for the
problem at hand. Also, the choice of priors for model parameters affects consistency
of Bayesian model selection procedures. Specifically, improper priors cannot be used
to calculate posterior model probabilities (Casella et al., 2009)—otherwise, one risks
running into Lindley’s paradox1 (Lindley, 1957).

The plan for this chapter is to describe a fully Bayesian model for variable selection
using I-priors. The approach that we take is a stochastic search of the model space due
to Kuo and Mallick (1998), realised through a simple Gibbs sampling procedure. The
main motivation behind using I-priors in Bayesian variable selection is its suitability
in accommodating to datasets with strong multicollinearity and being able to run with
little to no prior information about the parameters. A simulation study is conducted
and several real-world examples presented to demonstrate this fact.

1Briefly, in testing a point null hypothesis of the mean of a normally distributed parameter, the null
hypothesis is increasingly accepted as the prior variance of the parameter approaches infinity, regardless
of evidence for or against the null. The paradox is also termed Jeffreys-Lindley paradox (Robert, 2014).
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6.1 Preliminary: model probabilities, model evidence and
Bayes factors

The paradigm of model selection is as follows. From a finite set of models M =

{M1, . . . ,MK}, pairs of data {(y1,x1), . . . , (yn,xn)}, yi ∈ R and xi ∈ X ≡ Rp, had been
generated according to the generative process dictated by one of the models Mk ∈ M
and its respective parameters Θk. Having observed only this data set, the goal is to infer
which of the models had generated the data, and consequently obtain estimates for the
parameters. It is perhaps most natural to ponder which of the models is most likely to
be the “true” one given the data presented, and thus, this natural way of thinking leads
one to the concept of model probabilities. From a Bayesian perspective in particular, pos-
terior model probabilities allow us to quantify the certainty to which any model is behind
the data generative process, after taking into account relevant evidence (observation of
the data) and prior beliefs about model and parameter uncertainty.

Let p(M1), . . . , p(MK) be prior probabilities assigned to the model space M, and
p(Θk|Mk) be the prior on the parameters of model Mk. For any model Mk ∈ M, the
posterior model probability for model m is

p(Mk|y) =
p(y|Mk)p(Mk)∑K
k=1 p(y|Mk)p(Mk)

(6.2)

where

p(y|Mk) =

∫
p(y|Mk,Θk)p(Θk|Mk)dΘk (6.3)

is known as the marginal likelihood, or evidence, for model Mk. As a remark, the prior
distributions for the parameters do not necessarily need to depend on the model, so
we might have that p(Θk|Mk) = p(Θk). A natural strategy for model selection is to
select the model such that p(Mk|y) is largest (the highest probability model, HPM), but
several models rather than just a single one may be reported to convey model uncertainty
(Chipman et al., 2001).

Note, that models may be pairwise compared based on these posterior model proba-
bilities, for which the posterior odds

p(Mk|y)
p(M0|y)

=

Bayes factor︷ ︸︸ ︷
p(y|Mk)

p(y|M0)
×

prior odds︷ ︸︸ ︷
p(Mk)

p(M0)
(6.4)

provide a point summary for comparing model Mk against model M0. The first term
on the right-hand side is the Bayes factor for comparing any model Mk ∈ M to an-
other model M0 ∈ M, and is denoted by BF(Mk,M0). Thus, model selection based on
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posterior model probabilities can be formalised as the Bayesian alternative to classical
hypothesis testing using Bayes factors (Kass and Raftery, 1995).

The issue that is faced with Bayesian model selection is that all posterior model
probabilities must be calculated in order for a full comparison to be made. When the
model space is very large, this can prove to be an insurmountable task. In the case
of linear regression, where each of the p variables may be selected or not, the size
of the model space is 2p. Even for moderate sized p this can already be a challenge
computationally. In the coming sections, we shall see that this problem is alleviated by
the use of MCMC methods to evaluate posterior model probabilities.

6.2 The Bayesian variable selection model

We shall loosely refer to a model as a subset of variables selected from the full set of
variables {X1, . . . , Xp}. It would be useful to be able to index each of these 2p possible
models somehow, and we achieve this by the use of indicator variables γ = (γ1, . . . , γp) ∈
{0, 1}p. Let γj = 1 if the variable Xj is selected, and γj = 0 otherwise, for j = 1, . . . , p.
As an example, the full model, where all the variables are included in the model, is
denoted by γ = (1, . . . , 1), while the intercept only model is denoted by γ = (0, . . . , 0).
Note that we do not consider the intercept to be selectable.

Following Kuo and Mallick (1998), the linear model in (6.1) is expanded to include
the indicator variables to form

yi = α+

p∑
k=1

xikγkβk + ϵi

ϵi
iid∼ Nn(0, σ

2).

(6.5)

Hence, in addition to the usual model parameters (β, σ, α), we are also interested in
conducting model inferences through the posterior distribution of the γ’s. The priors for
the parameters are described below:

• Model indicators γj . An independent Bernoulli prior is specified for the model
indicators

p(γ) =

p∏
j=1

π
γj
j (1− πj)

1−γj . (6.6)

We may choose to set all πj = 0.5 a priori to reflect equally likely probabilities that
any model may be chosen. Alternatively, we might have some subjective beliefs
about which predictor is more likely or unlikely to be included in the model. We
may also choose to include πj in the estimation procedure by assigning a hyperprior
on πj such as the Beta(1, 1) (uniform distribution), Beta(1/2, 1/2) (Jeffreys prior),
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or any other suitable hyperprior. In any case, in this thesis we consider the simplest
case of setting all πj = 0.5.

• Regression coefficients β. The Kuo and Mallick (1998) model is often known
as the independent sampler due to the independence of model parameters and
the indicator variables, i.e., p(β, γ) = p(β)p(γ). As such, prior choices for the
regression coefficients can be any of the usual priors on β, including

– the independent prior β ∼ Np(0, c2Ip) for some choice of c (e.g. c = 10);

– the g-prior β|σ, g ∼ Np(0, gσ2(X⊤X)−1) for some g either chosen a priori or
estimated (Bayes or empirical Bayes); or

– the I-prior β|σ, κ ∼ Np(0, κσ2X⊤X), which is the focus of this chapter.

• Intercept α. A normal prior α ∼ N(0, σ2A).

• Scale σ. An inverse gamma prior σ ∼ Γ−1(c, d).

Priors for the intercept and scale parameters are chosen so as to maintain conjugacy
to the normal regression model. Choices for the prior hyperparameters depend on the
user’s prior beliefs, but it is reasonable to set vague and uninformative hyperparameters
to let the data speak as much as it can, especially in the absence of prior information.
With this in mind, we may choose large values of A (e.g. 100) and small values of the
shape and scale parameters for the inverse gamma (e.g. 0.001). Note that as c, d→ 0 in
the inverse gamma distribution we get the Jeffreys prior2 for scale parameters.

Remark 6.1. The BVS model (6.5) together with the choice of Bernoulli priors on γ

and a normal prior Np(0,Vβ) for β can be seen a spike-and-slab prior prior for linear
regression models, a mixture of a point mass at zero and a normal density (Geweke, 1996;
Mitchell and Beauchamp, 1988). Write θ = (γ1β1, . . . , γpβp)

⊤, which is interpreted as
the “model-specific” regression coefficients. Then, the prior on θ is equivalently written

θ|γ ∼

Np(0,Vβ) w.p. p(γ)

0 w.p. 1− p(γ).

A subtle fact of these spike-and-slab priors is that the posterior distribution for θ will
also be a combination of a point mass and a normal density (with appropriate posterior
parameters). Looking at it from this perspective, regression coefficients are assigned
zero values with positive probability, and it is this fact that allows covariates to be
dropped from the model. As pointed out by Kuo and Mallick (1998), the form of the
variable selection model allows the selection of important variables, while simultaneously
shrinking the coefficients via prior information.

2The Jeffreys prior for a parameter θ is defined as p(θ) ∝ |I(θ)|1/2 (Jeffreys, 1946).
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6.3 Gibbs sampling for the I-prior BVS model

The Bayesian variable selection model can be estimated using Gibbs sampling, as demon-
strated originally by Kuo and Mallick (1998). In this section, we describe the Gibbs
sampling procedure to obtain posterior samples of the parameters. For the I-prior specif-
ically, the joint density of the responses and the priors is

p(y, γ,β, α, σ2, κ) = p(y|γ,β, α, σ2)p(β|σ2, κ)p(α|σ2)p(γ)p(σ2)p(κ),

where the distribution of the model p(y|γ,β, α, σ2) and of the priors have been described
in the previous section (except for κ, which we now assign an inverse gamma distribu-
tion). Let us denote Θ = {α,β, γ, σ2, κ} to be the full set of parameters that we wish
to obtain posterior samples for. Starting with suitable initial values Θ(0), we then pro-
ceed to obtain samples Θ(1), . . . ,Θ(T ) by sampling each parameter from the conditional
posterior density of that parameter given the rest of the parameters. A suggested set
of initial values are the maximum likelihood (ML) estimates of Θ or the posterior mean
estimate of Θ under the full model γ = (1, . . . , 1) after an initial MCMC run.

The Gibbs conditional densities are straightforward to obtain on account of model
conjugacy (details of the derivation are given in Appendix I, p. 311). We start with
β. The conditional density of β given α, γ, σ2, κ is multivariate normal with mean
B̃(y − α1n) and covariance matrix σ2B̃, where B̃ = X⊤

γ Xγ + (κX⊤X)−1, and Xγ =

(γ1X1 · · · γpXp). Interestingly, when Xj is dropped from the model (γj = 0), the poste-
rior mean and variance for j’th component of β is entirely informed by the prior (Kuo
and Mallick, 1998). The data-driven I-prior incorporates information from the covariates
into the prior, which then informs the posterior. In a similar manner, the conditional
density for the intercept α is found to be N

(∑n
i=1(yi−x⊤

i θ)/Ã, σ
2Ã

)
, where Ã = n+A−1

and A is the prior variance for α.

The (conditional) posterior samples of γ = (γ1, . . . , γp) are obtained componentwise,
and each conditional probability mass function for γj is Bernoulli with success probability
π̃j = uj/(uj + vj), where

uj = πj exp
(
− 1

2σ2
∥y − α1n − Xθ

[1]
j ∥2

)
and

vj = (1− πj) exp
(
− 1

2σ2
∥y − α1n − Xθ

[0]
j ∥2

)
.

Here, we have used the notation θ
[1]
j to indicate the vector θ with the j’th component

replaced by βj , and θ
[0]
j to indicate the vector θ with the j’th component replaced by

0. Values of 1 for γ are more likely to be sampled when the ratio uj/vj is greater than
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the prior odds πj/(1− πj). Specifically when the prior probabilities πj are all set to be
0.5, then γj will be more likely to be sampled as ‘1’ if uj > vj , i.e. if the residual sum of
squares (RSS) ∥y − α1n − Xθ∥2 is smaller when the j’th component of θ is non-zero,
compared to the RSS when the j’th component of θ is zero.

We can in fact draw parallels to a Bayesian hypothesis test, with the null hypothesis
being H0 : βj = 0 and the alternative being H1 : βj ̸= 0, conditional on knowing all
other values of the parameters. Under Hk, y|Θ ∼ Nn(α1n + Xθ

[k]
j , σ2In), k = 0, 1. The

conditional Bayes factor comparing the model in the alternative hypothesis M1 to the
model in the null hypothesis M0 is therefore

BF(M1,M0) =
uj/πj

vj/(1− πj)
=

π̃j
1− π̃j

/
πj

1− πj
.

Thus, it can be seen that the decision to include or exclude the j’th variable from
the model relates a hypothesis test using the Bayes factor rule, and this decision is
embedded in the conditional posterior probabilities π̃j . The Gibbs sampling procedure
does something that can be described as “an automated stochastic F-test for subset
selection” (Kuo and Mallick, 1998).

Both scale parameters σ2 and κ follow the conditional inverse gamma distributions

σ2|α, β, γ, κ ∼ Γ−1
(
n/2 + cσ + 1, ∥y − α1n − Xθ∥2/2 + dσ

)
and

κ|α, β, γ, σ2 ∼ Γ−1
(
p/2 + cκ + 1,β⊤(X⊤X)−1β/σ2 + dκ

)
.

Note that the inverse gamma distribution that we specify here is defined by its shape
and scale parameter, and has the density function described in Appendix C.6. Here,
{cσ, dσ} and {cκ, dκ} are the shape and scale hyperparameters of the inverse gamma
priors on σ2 and κ respectively.

6.4 Posterior inferences

Having obtained posterior samples Θ(t) = {α(t),β(t), γ(t), σ2(t), κ(t)}, there are two quan-
tities of interest in relation to model inferences. The first is an estimate of posterior
model probabilities, given by

P̂(γ = γ′|y) = 1

T

T∑
i=1

[γ(t) = γ′], (6.7)

where [·] is the Iverson bracket. This gives an estimate of the probability of a model coded
by γ′ appearing in the posterior state space of models. The second is a quantification
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of the posterior inclusion for each of the p variables X1, . . . , Xp, known as posterior
inclusion probabilities (PIPs) for a variable being selected in any model. This is given
by

P̂(γj = 1|y) = 1

T

T∑
i=1

[γ
(t)
j = 1], j = 1, . . . , p. (6.8)

Posterior inclusion probabilities are the marginals of the posterior model probabilities
across each variable.

Table 6.1: Illustration of samples of γ from the Gibbs sampler for p = 3. As an example,
to estimate the posterior model probability of {X1,X3}, we count the occurrences of
the combination γ(t) = (1, 0, 1) in the sample and divide by T . To estimate posterior
inclusion probabilities for any of the three variables, we take the sample mean of the
binary variates column-wise.

t γ
(t)
1 γ

(t)
2 γ

(t)
3

1 1 0 1
2 1 0 0
3 1 1 0
...

...
...

...
T 1 0 1

Note, that the regression coefficient of interest is not β, but rather the “model aver-
aged” regression coefficients θ = (γ1β1, . . . , γpβp)

⊤ (Madigan and Raftery, 1994). Pos-
terior variances for θ will typically be larger than variances for β, because posterior
estimates surrounding θ will have incorporated model uncertainty, but β on the other
hand, will not. Thus, any inferential procedure surrounding the regression coefficients
avoids the risk of over-confidence. Note that, since θ will contain values of exactly zero
when predictors are dropped out of the model, the posterior density for θ is a mixture
of a point mass at zero and a normal density. In any case, the likelihood only provides
sufficient information to identify the product of β and γ, but not each of them separately
(Kuo and Mallick, 1998).

Remark 6.2. The intention of computing model-averaged regression coefficients θ is solely
for the inclusion of model uncertainty. There is a strong agreement in the Bayesian
variable selection literature that that such coefficients are practically meaningless when
it comes to explanatory inferences. Banner and Higgs (2017) writes that “regression
coefficients... may not hold equivalent interpretations across all of the models in which
they appear”, and one reason for this might be “interpretation of partial regression
coefficients can depend on other variables that have been included in the model”. The
use of model-averaged effect sizes may thus result in misleading inferences (Cade, 2015).
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Finally, any quantity of interest ∆ can be incorporated as part of the Gibbs sampling
procedure. That is, at each Gibbs iteration t = 1, . . . , T , calculate ∆(t) as a function
of the parameter values at iteration t. This can be done during the Gibbs sampling
process, or even after the fact as part of a post-processing procedure. Any inference
on the posterior of ∆ will then have incorporated the model uncertainty from a model
averaging standpoint, as discussed earlier. As an example, suppose we are interested in
the predicted value at a new covariate value xnew ∈ Rp. For each Gibbs sample, calculate

y
(t)
new = α(t) + x⊤

new(γ1β1, . . . , γpβp),

and obtain a point estimate ŷnew using the posterior mean or mode. The uncertainty
for this estimate is contained in the standard deviation calculated from the sample
y
(1)
new, . . . , y

(T )
new, from which a 95% credibility interval for this estimate can be obtained

from the empirical upper and lower 0.025 cut off points.

6.5 Two stage procedure

The variable selection procedure can be improved by a “preselection” of variables to
trim off unimportant variables which reduces the size of the model space being explored.
Without appealing to other external preselection methods, there is actually informa-
tion that we could use from Bayesian variable selection models in the form of posterior
inclusion probabilities. The procedure would work as follows:

1. Run the Bayesian variable selection model and obtain posterior inclusion proba-
bilities for each variable.

2. Discard variables with inclusion probablities less than a certain treshold, τ .

3. Re-run the Bayesian variable selection model on the set of reduced variables.

A natural choice for τ would be 0.5, and therefore a two-stage approach to Bayesian
variable selection can then be motivated as selecting the subset of variables which con-
stitutes what is known as the median probability model. The median probability model
is obtained by selecting all variables with a posterior inclusion probability of greater
than or equal to a half. Barbieri and Berger (2004) show that the median probability
model has the property of being optimally predictive (minimises squared error loss for
predictions) under certain strict conditions.

The notion of a two-stage approach is not new, as many variable selection methods
in the literature generally employ a preselection method of some kind before running
their selection process proper. This can be based on subjective preconceptions about
which variables to retain, substantive theory, or even an objective preselection criterion.
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Two-stage procedures for Bayesian variable selection models have been used in works by
Fouskakis and Draper (2008) and Ntzoufras (2011).

In the simulation studies conducted and observations from real-data examples, this
two-stage approach does seem to provide a benefit. The complexity of estimating all
model probabilities grows exponentially with p, therefore reducing this benefits the model
selection procedure because the search of the model space is less cluttered. Of course,
this idea works if the “correct” variables are deleted when proceeding to the second stage.
We posit that the p posterior inclusion probabilities are easier to estimate than the 2p

posterior model probabilities from the same amount of information coming from the
MCMC samples. As a result, information summarised through the posterior inclusion
probabilities are more precise than the posterior model probabilities.

6.6 Simulation study

In this section, we conduct a simulation study to compare the performance of different
priors in the Bayesian variable selection framework described above. The priors on β that
are compared are those mentioned in Section 6.2, i.e. the I-prior, the independent prior
with large prior variance (flat/uninformative prior), and the g-prior with g = n (unit
information prior, Ntzoufras, 2011). We also make a comparison the variable selection
performance of the Lasso, which, from a Bayesian perspective, is similar to setting a
double-exponential or Laplace priors on the regression coefficients (Park and Casella,
2008). For clarity, the Lasso model employed in the simulations is of a frequentist
regularisation framework as per Tibshirani (1996), and is neither a Bayesian variable
selection model as described earlier, nor a fully Bayes implementation as per Park and
Casella (2008). We felt it interesting to compare the Lasso as it is widely used for
variable selection of linear models.

The experiment is to select from a total of p = 100 variables of an artificial dataset
of sample size n = 150, which has pairwise correlations induced between the variables.
This was inspired by the studies done by George and McCulloch (1993) and Kuo and
Mallick (1998) in their respective papers, albeit on a larger scale (in theirs, p = 30). Five
different scenarios were looked at. For each scenario, only s out of 100 variables were
selected to form the “true” model and generate the responses according to the linear
model y ∼ N100(Xβ, σ2I150). The signal-to-noise ratio (SNR) as a percentage is defined
as s%, and the five scenarios are made up of varying SNR from high to low: 90%, 75%,
50%, 25%, and 10%. Variables that were included in the model had true β coefficients
equal to one. That is, βtrue = (1s,0100−s)

⊤, where 1s is a row-vector of s ones, and
0100−s is a row-vector of 100− s zeroes.
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The data generation process is summarised as follows:

• Draw Z1, . . . ,Z100
iid∼ N150(0, I150).

• Draw U ∼ N150(0, I150).

• Set X = (Z1 + U, . . . ,Z100 + U). This induces pairwise correlations of about 1/2
between the columns of X.3

• Draw y ∼ N150(Xβtrue, σ2I150), with σ = 2.

In each scenario, we are interested in obtaining the highest probability model and
counting the number of false choices made in this model after a two-stage procedure of
variable selection. False choices can either be selecting variables wrongly (false inclusion)
or failing to select a variable (false exclusion). Each scenario was repeated a total of 100
times to account for variability in the data generation process, and the results averaged.
A summary of the results is presented in Table 6.2. The overall results are also plotted
in the form a frequency polygon (see Figure 6.1).

Table 6.2: Simulation results (proportion of false choices) for the Bayesian variable
selection experiment using the I-prior, an independent prior, the g-prior and the Lasso
across varying SNR. Standard errors are given in parentheses.

Signal-to-noise ratio
False choices 90% 75% 50% 25% 10%
I-prior
0-2 0.93 (0.03) 0.92 (0.03) 0.90 (0.03) 0.79 (0.04) 0.55 (0.05)
3-5 0.07 (0.03) 0.07 (0.03) 0.10 (0.03) 0.20 (0.04) 0.27 (0.04)
>5 0.00 (0.00) 0.01 (0.01) 0.00 (0.00) 0.01 (0.01) 0.18 (0.04)

Ind. prior
0-2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.44 (0.05) 1.00 (0.00)
3-5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.30 (0.05) 0.00 (0.00)
>5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.26 (0.04) 0.00 (0.00)

g-prior
0-2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.78 (0.04) 0.86 (0.03)
3-5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.14 (0.03) 0.13 (0.03)
>5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.08 (0.03) 0.01 (0.01)

Lasso
0-2 0.03 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
3-5 0.19 (0.04) 0.02 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
>5 0.78 (0.04) 0.98 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

3For any row of X, Cov[Xj , Xk] = Cov[Zj+U,Zk+U ] = Var [U ] = 1, and Var[Xj ] = Var[Zj+U ] = 2.
Thus, Corr[Xj , Xk] = Cov[Xj , Xk]/(Var[Xj ]Var[Xk])

1/2 = 1/2.
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Figure 6.1: Frequency polygons for the number of false choices for each of the four priors.
The I-prior performs robustly well across the five scenarios tested, mostly yielding five
or fewer false inclusions or exclusions. Spurious exclusions led to the independent and
g-prior simultaneously performing well in low SNR and badly in high SNR scenarios.
The Lasso is known to be unreliable in the presence of collinearity.
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The simulation results seem to indicate that the I-prior performs consistently well
across all five scenarios, making no more than five false choices out of 100 (i.e. a 95%
correct selection rate) in at least 82% of the time in the worst scenario. We do not
observe much difference between the g-prior and the independent prior, and while they
behave poorly in high SNR scenarios, these two priors seem to perform extremely well
in low SNR scenarios. A high propensity to drop variables in these scenarios is a likely
explanation, which does not necessarily indicate good performance—they perform well
by contentiously omitting of a large number of unnecessary variables, especially in a
two-stage procedure. Finally, the Lasso is well known to yield poor selection perfor-
mance under multicollinearity, so the results are expected. The Lasso procedure was
not subject to a two-stage approach because the Lasso does not provide information
regarding posterior inclusion probabilities for individual variables.

We also inspect the sensitivity of the hyperprior choice of πj for the indicator variables
on the number of false choices made. Figure 6.2 plots the mean number of false choices
made in each of the five SNR scenarios with varying hyperprior setting for πj . From
the plot, it is seen that for high SNR scenarios, setting πj too low increases the number
of false exclusions. Conversely, for low SNR scenarios, setting πj too high increases the
number of false inclusions. This makes sense: when the true model size is small, then
setting πj too high encourages variables to be retained in the model, and vice versa.
While the optimal πj corresponds directly to the true SNR (e.g. SNR = 10% performs
best under πj = 0.10), Figure 6.2 makes a case for πj = 0.5 to be a “safe choice” in the
face of prior ignorance on model size.
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Figure 6.2: Average number of false choices (false inclusions or false exlusions) for the five
different scenarios (SNR varied between 90%, 75%, 50%, 25% and 10%) with different
hyperprior settings for γj ∼ Bern(πj).
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6.7 Examples

Now, we apply our I-prior Bayesian variable selection model to three real-world data
sets that have all been previously analysed in the variable selection literature. All
examples were analysed in R using our ipriorBVS package (Jamil, 2018) which con-
tains a wrapper to JAGS (Plummer, 2003). Reproducible code is available at http:
//myphdcode.haziqj.ml. In all analyses, a two-stage procedure was conducted for the
I-prior model, where each stage consists of obtaining 10,000 MCMC samples.

6.7.1 Aerobic data set

Figure 6.3: The sample correlations of interest in the aerobic fitness dataset. These show
variables with correlations greater than 0.4 in magnitude.

This dataset appeared in the SAS/STAT® User’s Guide (SAS Institute Inc., 2008)
and was also analysed by Kuo and Mallick (1998). It involves understanding the factors
which affect aerobic fitness, which is measured by the ability to consume oxygen. A
sample of n = 30 male participants’ had their physical fitness measured by means of
simple exercise tests. The response variable contains measurement of oxygen uptake
rate in mL/kg body weight per minute. The six covariates were the participants’ age
(X1), weight (X2), time taken to run one mile (X3), resting heart rate (X4), heart rate
while running (X5), and maximum heart rate during the exercise (X6). This dataset,
although small in size, is interesting to analyse because of the correlations between the
variables, mainly due to the measurements being taken during the same exercise test.
The sample correlations of interest are shown in Figure 6.3.

Notice that Table 6.3 reports only on four out of 26 = 64 possible models, but the
sum of the posterior model probabilities add to one. Naturally, models which are deemed
important by virtue of data evidence are sampled more often, and in fact, models which
are unpromising may not even get sampled. So, MCMC methods does not need to list
out all possible models because models which are never visited in the posterior state
space are assigned a probability of zero. The highest posterior model was found to be
the model with the variables X1, X3 and X5 (PMP = 0.564). In Figure 6.4, we can see
that the point mass at zero overwhelms the rest of the values in the density plots for
X2, X4 and X6, and hence these variables were dropped.
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Table 6.3: Results for variable selection of the Aerobic data set. Note that the Bayes
factors reported are the Bayes factors comparing any of the models to Model 1 (base
model).

PIP Coef. (SD) Model 1 Model 2 Model 3 Model 4
X1 0.685 −0.169 (0.14) 3 3

X2 0.205 −0.017 (0.05)
X3 1.000 −0.745 (0.12) 3 3 3 3

X4 0.168 −0.013 (0.05)
X5 0.663 −0.163 (0.15) 3 3

X6 0.275 0.003 (0.10)

PMP 0.564 0.235 0.105 0.096
BF 1.000 0.418 0.187 0.170
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Figure 6.4: Posterior density plots of the regression coefficients θ for the aerobic data
set. The spike at zero observed in the density plots for X2, X4 and X6 is indicative of
these variable being dropped often in the posterior samples.
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6.7.2 Mortality and air pollution data

The next real world application comes from a paper by McDonald and Schwing (1973).
In it, the effects of air pollution on mortality in a US metropolitan area (n = 60 and
p = 15) were studied. The response variable is the total age adjusted mortality rate, and
the main pollution effects of interest were that of hydrocarbons (HC), oxides of nitro-
gen (NOx) and sulphur dioxide (SO2). Several other environmental and socioeconomic
considerations were taken into account, otherwise the model may include unexplained
variation caused by factors other than pollution. For example, a metropolitan area with
a high proportion of the elderly should expect to have a higher mortality rate than one
with a low proportion. All of the variables can be considered as continuous and real;
Table 6.4 provides a description of the variables.

Table 6.4: Description of the air pollution data set.

Variable Description
Mortality Total age adjusted mortality rate
Precipitation Mean annual precipitation (in)
Relative humidity Percent relative humidity, annual average at 1 p.m.
January temperature Mean January temperature (◦F)
July temperature Mean July temperature (◦F)
Population density Population per square mile in urbanised area
Household size Population per household
Education Median school years completed for those over 25
Sound housing units Percentage of sound housing units (no defects)
Age >65 years Percent of population that is 65 years of age or over
Non-white Percent of urbanised area population that is non-white
White collar Percent employment in white-collar urbanised occupations
Income <$3,000 Percent of families with income under $3,000
HC Relative population potential of hydrocarbons
NOx Relative population potential of oxides of nitrogen
SO2 Relative population potential of sulphur dioxide

This dataset also contains several highly correlated variables which impedes a mean-
ingful regression analysis. When the full model is fitted using ordinary least squares,
none of the pollutant effects were found to be significant. Clearly, a variable selection
method was required. McDonald and Schwing (1973) used a ridge regression technique
to determine which variables to select and eliminate “unstable” coefficients found from
a trace analysis. In addition, the authors also looked at a variable elimination method
based on total squared error via Mallow’s Cp. The results are summarised in Table 6.5.

In this case, the I-prior BVS model concurred with the overall finding of McDonald
and Schwing (1973), in that SO2 was found to be a significant contributing factor towards
mortality rates, while the rest of the pollutants were not. the I-prior BVS model also
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Table 6.5: A comparison of the coefficient values obtained using ordinary least squares
(full model), McDonald and Schwing’s minimum Cp and ridge analysis, and the I-prior.
Standard errors/posterior standard deviations are given in parentheses. Values shaded
grey indicate OLS regression coefficients not significant at the 10% level.

Full model Min. Cp Ridge I-prior
Environmental factors

Precipitation 0.306 (0.14) 0.247 (0.07) 0.230 (0.07) 0.254 (0.12)
Relative humidity 0.009 (0.10)
January temperature -0.318 (0.18) -0.164 (0.06) -0.172 (0.06) -0.195 (0.11)
July temperature -0.237 (0.15) -0.073 (0.07)

Demographic factors
Population density 0.084 (0.09) 0.091 (0.06)
Household size -0.232 (0.15)
Education -0.233 (0.16) -0.190 (0.06) -0.171 (0.07) -0.151 (0.12)
Sound housing units -0.052 (0.15)
Age >65 years -0.213 (0.20)
Non-white 0.640 (0.19) 0.481 (0.07) 0.462 (0.07) 0.517 (0.10)
White collar -0.014 (0.12)
Income <$3,000 -0.009 (0.22)

Pollution potential
HC -0.979 (0.72)
NOx 0.983 (0.75)
SO2 0.090 (0.15) 0.255 (0.06) 0.232 (0.06) 0.302 (0.09)

Size 15 6 6 5
R2 0.764 0.541 0.553 0.676

obtained a model with the largest R2 and the smallest size. We note that the effect size
for SO2 is slightly larger under an I-prior, but generally, the rest of the I-prior coefficients
are similar in magnitude and sign to the coefficients of the other two models.

6.7.3 Ozone data set

In this section, we replicate the Bayesian variable selection analysis of the Ozone dataset
done by Casella and Moreno (2006, abbr. C&M) which appeared initially in Breiman and
Friedman (1985, abbr. B&F), and also show how Bayesian variable selection can help
select important interaction terms. The data consists of daily ozone readings and various
meteorological quantities, and the aim was to see which of these quantities contributed
to the ozone concentration. The variables considered are explained in Table 6.6.

The data contains 366 points, one for each day of the leap year 1976. There are 163
data points containing missing data on some of the predictors, so we did a complete case
analysis on the remaining 203 samples. Out of these 203, we randomly set aside 25 to
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Table 6.6: Description of the ozone data set used in this analysis. The data is available
from the R package mlbench (Leisch and Dimitriadou, 2010).

Variable Description
y Daily maximum one-hour-average ozone reading (ppm) at Upland, CA
X1 Month: 1 = January, . . . , 12 = December
X2 Day of month: 1, 2, . . .
X3 Day of week: 1 = Monday, . . . , 7 = Sunday
X4 500-millibar pressure height (m) measured at Vandenberg Air Force Base
X5 Wind speed (mph) at Los Angeles International Airport (LAX)
X6 Humidity (%) at LAX
X7 Temperature (◦F) measured at Sandberg, CA
X8 Inversion base height (feet) at LAX
X9 Pressure gradient (mmHg) from LAX to Daggett, CA
X10 Visibility (mi) measured at LAX
X11 Temperature (◦F) measured at El Monte, CA
X12 Inversion base temperature (degrees Fahrenheit) at LAX

use for validation, thus the n used to train the model was n = 178. The training and test
set were repeated multiple times and results averaged in order to make a comparison to
the unknown training and test set used in the other studies. Out-of-sample prediction
RMSE were obtained, as well as the coefficient of determination R2.

C&M removed the variables X11 and X12 before running their selection model, citing
multicollinearity causing ill-conditioned design matrices. Upon inspection, there are
indeed correlations among the variables as high as 0.93 for some of them, but not enough
to cause rank deficiency in the design matrix and a degenerate X⊤X matrix. The
sample correlations Ĉorr(X7, X11) = 0.91 and Ĉorr(X11, X12) = 0.93 seemed to drive
the decision to drop the two variables, and while it is a valid concern, we shall still
conduct variable selection on the full set of 12 variables to see the performance of I-
priors in the presence of multicollinearity in this real-world data set. On another note,
the variables X1, X2 and X3 were presumably intended to be categorical as in modelling
seasonality in a time series data, but these were treated as continuous, as did C&M. The
results are compared in Table 6.7.

Table 6.7: Results for variable selection of the Ozone data set using only linear predictors.

Method Variables Size R2 RMSE
I-prior X1, X6, X11 3 0.708 0.554
Casella and Moreno (C&M) X6, X7, X8 3 0.686 0.992
Breiman and Friedman (B&F) X7, X8, X9, X10 4 0.669 1.056

What we found was that the model selected using the I-prior does better in terms of
R2 as well as RMSE compared to the methods used by C&M and B&F. The average
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posterior model probability for {X1, X6, X11} as found by the I-prior was 0.7224. One
thing to note is that the I-prior model selected the variable X11 instead of its highly
correlated proxy X7, which is what C&M selected. These two variables are temperature
measurements at different locations in California. As C&M excluded X11 from the model
search it was of course never considered in their model selection process, and because
we included it in ours, the variable selection model was able to consider both variables
together and decide on the more appropriate one.

Interestingly, the distance as the crow flies between Sandberg, CA (location of tem-
perature measurements for X7) and Upland, CA (location of ozone readings) is roughly
121 km, but El Monte, CA (location of temperature measurements for X11) is just 35
km away from Upland, CA. It stands to reason that X11 provides more geographical
reliability than X7. Unless there is a strong insistence on deleting variables beforehand,
we might not know for sure whether the variable was rightfully removed from consider-
ation, as this example seems to prove. Out of curiosity, running the variable selection
model on the reduced variable space as C&M did, we arrive at the same results as theirs.

Figure 6.5: Locations5 of the various points of interest in California, USA, related to the
ozone measurements.

We then used the I-prior method to select between the squared terms and all level two
interactions, in addition to all the variables, in an effort to improve model prediction. For
12 such variables, the number of variables to select becomes 12+12+12(12−1)/2 = 90.
By doing so, we were able to improve the model to give a slightly better predictive
ability. The results are shown below in Table 6.8. The I-prior again selected a model
which was superior in terms of R2 and RMSE compared to that obtained by C&M.

4Since the total model space used was different between our method, C&M and B&F, it does not make
sense to compare posterior model probabilities which we obtained. C&M reported a model probability
of 0.491 for their model, but this model was not selected at all using the I-prior.

5Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under CC BY-SA 3.0.
Created using the ggmap package (Kahle and Wickham, 2013) in R.
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Table 6.8: Results for variable selection of the Ozone data set using linear, squared and
two-way interaction terms.

Method Variables Size R2 RMSE
I-prior X1, X5, X6, X11, X12, X

2
1 , X

2
9 , X6X11, X6X12, X7X9 10 0.812 0.503

C&M X2, X
2
1 , X

2
7 , X

2
9 , X1X5, X2X6, X3X7, X4X6, X6X8, X6X10 10 0.758 0.873

6.8 Conclusion

The model selection problem is an important one in statistics, but highly contentious.
Miller (2002) writes that many statisticians view model selection as “unclean” or “dis-
tasteful”, and that “terms such as ‘fishing expeditions’, ‘torturing the data until they
confess’, ‘data mining’, and others are used as descriptions of these practices”. The dis-
agreement with the principle of model selection stems from the belief in the mantra that
models should only be built by thoughtfully choosing variables which are expected to
influence the response by appealing to substantive theory, and not by virtue of optimis-
ing some model selection criterion. However, variable selection as an exploratory study
is certainly justified by many practical applications, especially when there is a genuine
desire to know the most reasonable, parsimonious and interpretable model. Through
variable selection exercises, we can learn which covariates are important, and which are
negligible, in explaining the variation in the response.

The Bayesian variable selection method that we have seen has the appeal of reducing
the problem of model search into one of estimation. At the outset, we aimed to seek
a model which: 1) requires little tuning on the part of the user; 2) would work well
in the presence of multicollinearity; and 3) is able to work well with little to no prior
information. The I-prior on the regression coefficients in Kuo and Mallick’s (1998) spike-
and-slab stochastic search framework achieves this aim.

The attractive feature of a Bayesian approach to variable selection is the ability to
simultaneously shrink and select predictors, thereby incorporating model uncertainty in
the regressors. Sparsification is not “hard coded”, in the sense that regression coefficients
are assigned a value of zero with some positive probability in the posterior. This is
unlike the regularisation or penalised log-likelihood approach to variable selection using
the Lasso, elastic net, and so on, whereby sparsity is induced at the mode, but not in
the posterior distribution (Scott and Varian, 2014). This translates to being provided
with a single variable selection decision, rather than information that is coded through
a probability distribution.

We discuss three areas to concentrate on for future research and improvement:
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1. p > n cases. Typically, when there is insufficient information in the data to
inform the estimation, then additional information is sought from the priors. In
our case, the I-prior covariance involves the inverse of a low rank matrix which is not
invertible. A p-variate normal distribution with a singular covariance matrix will
only have a probability distribution defined on a low dimensional subspace. The
issue may however be computational—it might be worth exploring the generalised
inverse, or study ways in which to avoid the inverse computation in the Gibbs
sampler. As a matter of fact, we note that the posterior precision for β can be
written as

B̃−1 =
(
X⊤

γ Xγ + (κX⊤X)−1
)−1

= X⊤
γ Xγ

(
(X⊤

γ Xγ)
2 + κIp

)−1

which avoids the need for inverting the low-rank matrix X⊤
γ Xγ .

2. Improvement in computational time. Although the model itself is not com-
putationally intensive to run (roughly O(np2) in time per Gibbs iteration), the
main bottleneck is the reliance on a stochastic sampling algorithm. As in the
previous chapter, variational inference is a promising area to look into, especially
given that the Gibbs conditional distributions were straightforward to obtain, and
these might be similar to a mean-field variational distribution. If this is successful,
then it is expected to reduce computational time and avoid convergence issues that
comes with traditional MCMCs. Variational inference with spike-and-slab priors
on regression coefficients was studied by Ormerod et al. (2017).

3. Extension to generalised linear models. Kuo and Mallick (1998) in their
paper already provided a sketch of how the variable selection model would work.
With the ideas in Chapter 5, we can extend the I-prior variable selection to cate-
gorical responses when the continuous latent propensities are modelled using linear
functions. Such an approach has been implemented in gene selection studies, for
which the variables are gene expressions and the responses are presence of a par-
ticular disease (Lee et al., 2003).

Finally, it should be mentioned that more complex variable selection models can be
coded with the γ indicators. For instance, in selecting squared or interaction terms, we
can insist on having the model select the main term if the squared or interaction term
is selected, by specifying

yi = α+ max(γ1, γ3)β1x1i + max(γ2, γ3)β2x2i + γ3β3x1ix2i.

Or perhaps, we could use a single γ indicator for the dummy variables which make up
a single categorical covariate, which we would then infer on the selection of the single
covariate rather than each individual category of the covariate.
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