
Chapter 5

I-priors for categorical responses

Consider polytomous response variables y = {y1, . . . , yn}, where each yi takes on exactly
one of the values from the set of m possible choices {1, . . . ,m}. Modelling categorical
response variables is of profound interest in statistics, econometrics and machine learn-
ing, with applications aplenty. In the social sciences, categorical variables often arise
from survey responses, and one may be interested in studying correlations between ex-
planatory variables and the categorical response of interest. Economists are frequently
interested in discrete choice models to explain and predict choices between several al-
ternatives, such as consumers’ choices of goods or modes of transport. In this age of big
data, machine learning algorithms are used for classification of observations based on
what is usually a large set of variables or features.

The model (1.1) subject to normality assumptions (1.2) is not entirely appropriate
for polytomous variables y. As an extension to the I-prior methodology, we propose
a flexible modelling framework suitable for regression of categorical response variables.
In the spirit of generalised linear models (McCullagh and Nelder, 1989), we relate class
probabilities of the observations to a normal I-prior regression model via a link function.
Perhaps though, it is more intuitive to view it as machine learners do: since the regression
function is ranged on the entire real line, it is necessary to “squash” it through some
sigmoid function to conform it to the interval [0, 1] suitable for probability ranges.

Expanding on this idea further, assume that the yi’s follow a categorical distribution,
i = 1, . . . , n, denoted by

yi ∼ Cat(pi1, . . . , pim),

with the class probabilities satisfying pij ≥ 0,∀j = 1, . . . ,m and
∑m

j=1 pij = 1. The
probability mass function (pmf) of yi is given by

p(yi) = p
[yi=1]
i1 · · · p[yi=m]

im ,
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where the notation [·] refers to the Iverson bracket1. As a side note, when there are only
two possibilities for each outcome yi, i.e. m = 2, we have the Bernoulli distribution.
The class probabilities are made to depend on the covariates through the relationship

g(pi1, . . . , pim) =
(
α1 + f1(xi), . . . , αm + fm(xi)

)
,

where g : [0, 1]m → Rm is some specified link function. As we will see later, an under-
lying normal regression model as in (1.1) subject to (1.2) naturally implies a probit link
function. With an I-prior assumed on the fj ’s, we call this method of probit regression
using I-priors the I-probit regression model.

Due to the nature of the model assumptions, unfortunately the posterior distribution
of the regression functions cannot be found in closed form. In particular, marginalising
the I-prior from the joint likelihood involves a high-dimensional intractable integral (c.f.
Equation5.10). Similar problems are encountered in mixed logistic or probit multinomial
models (Breslow and Clayton, 1993; McCulloch et al., 2000) and also in Gaussian process
classification (Neal, 1999; Rasmussen and Williams, 2006). In these models, Laplace
approximation for maximum likelihood (ML) estimation or Markov chain Monte Carlo
(MCMC) methods for Bayesian estimation are used. We instead explore a variational
approximation to the marginal log-likelihood, and by extension, to the posterior density
of the regression functions. The main idea is to replace the difficult posterior distribution
with an approximation that is tractable to be used within an EM framework. As such,
the computational work derived in the previous section is applicable for the estimation
of I-probit models as well.

As in the normal I-prior model, the I-probit model estimated using a variational EM
algorithm is seen as an empirical Bayes method of estimation, since the model parameters
are replaced with their (pseudo) ML estimates. It is emphasised again, that working in
such a semi-Bayesian framework allows fast estimation of the model in comparison to
traditional MCMC, yet provides us with the conveniences that come with Bayesian
machinery. For example, inferences around log odds is usually cumbersome for probit
models, but a credibility interval can easily be obtained by resampling methods from the
posterior distribution of the regression function, which, as we shall see, is approximated
to be normally distributed.

By choosing appropriate RKHSs/RKKSs for the regression functions, we are able to
fit a multitude of binary and multinomial models, including multilevel or random-effects
models, linear and non-linear classification models, and even spatio-temporal models.
Examples of these models applied to real-world data is shown in Section 5.7. We find
that the many advantages of the normal I-prior methodology transfer over quite well to
the I-probit model for binary and multinomial regression.

1[A] returns 1 if the proposition A is true, and 0 otherwise. The Iverson bracket is a generalisation
of the Kronecker delta.
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5.1 A latent variable motivation: the I-probit model

We derive the I-probit model through a latent variable motivation. It is convenient,
as we did in Section 4.1.4 (p. 106), to again think of the responses yi ∈ {1, . . . ,m}
as comprising of a binary vector yi· = (yi1, . . . , yim)⊤, with a single ‘1’ at the position
corresponding to the value that yi takes. That is,

yij =

1 if yi = j

0 if yi ̸= j.

With yi
iid∼ Cat(pi1, . . . , pim) for i = 1, . . . , n, each yij is distributed as Bernoulli with

probability pij , j = 1, . . . ,m according to the above formulation. Now, assume that,
for each yi1, . . . , yim, there exists corresponding continuous, underlying, latent variables
y∗i1, . . . , y

∗
im such that

yi =



1 if y∗i1 ≥ y∗i2, y∗i3, . . . , y∗im
2 if y∗i2 ≥ y∗i1, y∗i3, . . . , y∗im
...

m if y∗im ≥ y∗i2, y∗i3, . . . , y∗im−1.

(5.1)

In other words, yij = arg maxm
k=1 y

∗
ik. Such a formulation is common in economic choice

models, and is rationalised by a utility-maximisation argument: an agent faced with a
choice from a set of alternatives will choose the one which benefits them most. In this
sense, the y∗ij ’s represent individual i’s latent propensities for choosing alternative j.

Instead of modelling the observed yij ’s directly, we model instead, for observation
i = 1, . . . , n, the m latent variables corresponding to each class or response category
j = 1, . . . ,m according to the regression problem

y∗ij = α+ αj + fj(xi) + ϵij

(ϵi1, . . . , ϵim)⊤
iid∼ Nm(0,Ψ−1),

(5.2)

with α being the grand intercept, αj group or class intercepts, and fj : X → R a
regression function belonging to some RKKS F of functions over the covariate set X
with reproducing kernel hη. We can see some semblance of this model with the one
in (4.7), and ultimately the aim is to assign I-priors to the regression function of these
latent variables, which we shall describe shortly. For now, write µ(xi) ∈ Rm whose
j’th component is α + αj + fj(xi), and realise that each y∗

i· = (y∗i1, . . . , y
∗
im)⊤ has the

distribution Nm(µ(xi),Ψ
−1), conditional on the data xi, the intercepts α, α1, . . . , αm,

the evaluations of the functions at xi for each class f1(xi), . . . , fm(xi), and the error
covariance matrix Ψ−1.
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The probability pij of observation i belonging to class j (or responding into category
j) is then calculated as

pij = P(yi = j)

= P
(
{y∗ij > y∗ik | ∀k ̸= j}

)
=

∫
· · ·
∫

{y∗ij>y∗ik | ∀k ̸=j}

ϕ(y∗i1, . . . , y
∗
im|µ(xi),Ψ−1)dy∗i1 · · · dy∗im, (5.3)

where ϕ(·|µ,Σ) is the density of the multivariate normal with mean µ and variance
Σ. This is the probability that the normal random variable y∗

i· belongs to the set
Cj := {y∗ij > y∗ik | ∀k ̸= j}, which are cones in Rm. Since the union of these cones is
the entire m-dimensional space of reals, the probabilities add up to one and hence they
represent a proper probability mass function (pmf) for the classes. For reference, we
define our probit link function g−1

j (·|Ψ) : Rm → [0, 1] by the mapping

µ(xi) 7→
∫
Cj
ϕ(y∗|µ(xi),Ψ−1)dy∗. (5.4)

While this does not have a closed-form expression and highlights one of the difficulties
of working with probit models, the integral is by no means impossible to compute—see
Section 5.6.1 for a note regarding this matter.

Now, we’ll see how to specify an I-prior on the regression problem (5.2). In the naïve
I-prior classification model (Section 4.1.4, p. 106), we wrote f(xi, j) = αj + fj(xi), and
called for f to belong to an ANOVA RKKS with kernel defined in (4.6). Instead of doing
the same, we take a different approach. Treat the αj ’s in (5.2) as intercept parameters
to estimate with the additional requirement that

∑m
j=1 αj = 0. Further, let F be a

(centred) RKHS/RKKS of functions over X with reproducing kernel hη. Now, consider
putting an I-prior on the regression functions fj ∈ F , j = 1 . . . ,m, defined by

fj(xi) = f0(xi, j) +
n∑

k=1

hη(xi, xk)wkj

with wi· := (wi1, . . . , wim)⊤
iid∼ N(0,Ψ). This is similar to the naïve I-prior specification

(4.7), except that the intercept have been treated as parameters rather than account-
ing for them using an RKHS of functions (Pearson RKHS or identity kernel RKHS).
Importantly, the overall regression relationship still satisfies the ANOVA functional de-
composition, because the αj ’s sum to zero. We find that this approach, rather than
the I-prior specification described in the naïve classification, bodes well down the line
computationally.
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We call the multinomial probit regression model of (5.1) subject to (5.2) and I-priors
on fj ∈ F , the I-probit model. For completeness, this is stated again: for i = 1, . . . , n,
yi = arg maxm

k=1 y
∗
ik ∈ {1, . . . ,m}, where, for j = 1, . . . ,m,

y∗ij = α+ αj +

fj(xi)︷ ︸︸ ︷
f0(xi, j) +

n∑
k=1

hη(xi, xk)wkj + ϵij

ϵi· := (ϵi1, . . . , ϵim)⊤
iid∼ Nm(0,Ψ−1)

wi· := (wi1, . . . , wim)⊤
iid∼ Nm(0,Ψ).

(5.5)

The parameters of the I-probit model are denoted by θ = {α1, . . . , αm, η,Ψ}. To estab-
lish notation, let

• ϵ ∈ Rn×m denote the matrix containing (i, j) entries ϵij , whose rows are ϵi·,
columns are ϵ·j , and is distributed ϵ ∼ MNn,m(0, In,Ψ−1);

• w ∈ Rn×m denote the matrix containing (i, j) entries wij , whose rows are wi·,
columns are w·j , and is distributed w ∼ MNn,m(0, In,Ψ);

• f, f0 ∈ Rn×m denote the matrices containing (i, j) entries fj(xi) and f0(xi, j) re-
spectively, so that f = f0 + Hηw ∼ MNn,m(1nf⊤0 ,H2

η,Ψ);

• α = (α+ α1, . . . , α+ αm)⊤ ∈ Rm be the vector of intercepts;

• µ = 1nα
⊤ + f, whose (i, j) entries are µj(xi) = α+ αj + fj(xi); and

• y∗ ∈ Rn×m denote the matrix containing (i, j) entries y∗ij , that is, y∗ = µ + ϵ, so
y∗|w ∼ MNn,m(µ = 1nα

⊤ + Hηw, In,Ψ−1) and vec y∗ ∼ Nnm

(
vec(1nα

⊤),Ψ ⊗
H2

η + Ψ−1 ⊗ In
)
—note that the marginal distribution of y∗ cannot be expressed

as a matrix normal, except when Ψ = Im.

In the above, we have made use of matrix normal distributions, denoted by MN(·, ·). The
definition and properties of matrix normal distributions can be found in (Appendix C.2,
p. 279).

Before proceeding with estimating the I-probit model (5.5), we lay out several stand-
ing assumptions:

A4 Centred responses. Set α = 0.

A5 Zero prior mean. Assume a zero prior mean f0(x) = 0 for all x ∈ X .

A6 Fixed error precision. Assume Ψ is fixed.

Assumption A4 is a requirement for identifiability, while A5 is motivated by a similar
argument to assumption A2 in the normal I-prior model. While estimation of Ψ would
add flexibility to the model, several computational issues were not able to be resolved
within the time limitations of completing this project (see Section 5.6.3).
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5.2 Identifiability and IIA

The parameters in the standard linear multinomial probit model are well known to be
unidentified (Keane, 1992; Train, 2009), and we find this to be the case in the I-probit
model as well. Unrestricted probit models are not identified for two reasons. Firstly,
an addition of a non-zero constant a ∈ R to the latent variables y∗ij ’s in (5.1) will not
change which latent variable is maximal, and therefore leaves the model unchanged. It is
for this reason that assumptions A4 and A5 are imposed. Secondly, all latent variables
can be scaled by some positive constant c ∈ R>0 without changing which latent variable
is largest. Together, this means that m-variate normal distribution Nm

(
µ(xi),Ψ

−1
)

of the underlying latent variables y∗
i· would yield the same class probabilities as the

multivariate normal distribution Nm

(
a1m + cµ(xi), c

2Ψ−1
)
, according to (5.3). There-

fore, the multinomial probit model is not identified as there exists more than one set of
parameters for which the categorical likelihood

∏
i,j pij is the same.

Identification issues in the probit model is resolved by setting one restriction on the
intercepts α1, . . . , αm (location) and m+1 restrictions on the precision matrix Ψ (scale).
Restrictions on the intercepts include

∑m
j=1 αj = 0 or setting one of the intercepts to zero.

In this work, we apply the former restriction to the I-probit model, as this is analogous
to the requirement of zero-mean functions in the functional ANOVA decomposition.
If A6 holds, then location identification is all that is needed to achieve identification.
However, if Ψ is a free parameter to be estimated, only m(m− 1)/2− 1 parameters are
identified. Many possible specifications of the restriction on Ψ is possible, depending on
the number of alternatives m and the intended effect of Ψ (to be explained shortly):

• Case m = 2 (minimum number of restrictions = 3).

Ψ =

(
1

0 0

)
, or Ψ =

(
1

0 1

)

• Case m = 3 (minimum number of restrictions = 4).

Ψ =

 1

ψ12 ψ22

0 0 0

 , or Ψ =

1

0 ψ22

0 0 ψ33


• Case m ≥ 4 (minimum number of restrictions = m+ 1).

Ψ =


1

ψ12 ψ22
...

... . . .
ψ1,m−1 ψ2,m−1 · · · ψm−1,m−1

0 0 · · · 0 0

 , or Ψ =


ψ11

ψ22

. . .
ψmm
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Remark 5.1. Identification is most commonly achieved by fixing the latent propensities
of one of the classes to zero and fixing one element of the covariance matrix (Bunch,
1991; Dansie, 1985). Fixing the last class, say, to zero, i.e. y∗im = 0, ∀i = 1, . . . , n has
the effect of shrinking Ψ to an (m − 1) matrix, and thus one more restriction needs to
be made (typically, Ψ11 is set to one). This speaks to the fact that the absolute values
of the latent propensities themselves do not matter, and only their relative differences
do. We also remark that for the binary case (m = 2), setting the latent propensities for
the second class to zero and fixing the remaining variance parameter to unity yields

pi1 = P(y∗i1 > y∗i2 = 0)

= P
(
α1 + f1(xi) + ϵi1 > 0 | ϵi1

iid∼ N(0, 1)
)

= Φ
(
α1 + f1(xi)

)
(5.6)

and pi2 = 1−Φ
(
α1 + f1(xi)

)
, i = 1, . . . , n—the familiar binary probit model. Note that

in the binary case only one set of latent propensities need to be estimated, so we can
drop the subscript ‘1’ in the above equations. In fact, for m classes, only m− 1 sets of
regression functions need to be estimated (since one of them needs to be fixed), but in
the multinomial presentation of this thesis we define regression functions for each class.

Now, we turn to a discussion of the role of Ψ in the model. In decision theory, the
independence axiom states that an agent’s choice between a set of alternatives should
not be affected by the introduction or elimination of a choice option. The probit model
is suitable for modelling multinomial data where the independence axiom, which is also
known as the independence of irrelevant alternatives (IIA) assumption, is not desired.
Such cases arise frequently in economics and social science, and the famous Red-Bus-
Blue-Bus example is often used to illustrate IIA: suppose commuters face the decision
between taking cars and red busses. The addition of blue busses to commuters’ choices
should, in theory, be more likely chosen by those who prefer taking the bus over cars.
That is, assuming commuters are indifferent about the colour of the bus, commuters who
are predisposed to taking the red bus would see the blue bus as an identical alternative.
Yet, if IIA is imposed, then the three choices are distinct, and the fact that red and blue
busses are substitutable is ignored.

To put it simply, the model is IIA if choice probabilities depend only on the choice
in consideration, and not on any other alternatives. In the I-probit model, or rather, in
probit models in general, choice dependency is controlled by the error precision matrix Ψ.
Specifically, the off-diagonal elements Ψjk capture the correlations between alternatives
j and k. Allowing all m(m + 1)/2 covariance elements of Ψ to be non-zero leads to
the full I-probit model, and would not assume an IIA position. Figure 5.1 illustrates
the covariance structure for the marginal distribution of the latent propensities, Vy∗ =

Ψ⊗H2
η +Ψ−1 ⊗ In, and of the I-prior Vf = Ψ⊗H2

η.
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j = 1 j = 2 · · · j = m

j = 1 V[1, 1] V[1, 2] · · · V[1,m]

j = 2 V[2, 1] V[2, 2] · · · V[2,m]

...
...

...
. . .

...

j = m V[m, 1] V[m, 2] · · · V[m,m]

j = 1 j = 2 · · · j = m

V[1, 1]

V[2, 2]

. . .

V[m,m]

Figure 5.1: Illustration of the covariance structure of the full I-probit model (left) and
the independent I-probit model (right). The full model has m2 blocks of n×n symmetric
matrices, and the blocks themselves are arranged symmetrically about the diagonal. The
independent model, on the other hand, has a block diagonal structure, and its sparsity
induces simpler computational methods for estimation.

While it is an advantage to be able to model the correlations across choices (unlike in
logistic models), there are applications where the IIA assumption would not adversely
affect the analysis, such as classification tasks. Some analyses might also be indifferent
as to whether or not choice dependency exists. In these situations, it would be beneficial,
algorithmically speaking, to reduce the I-probit model to a simpler version by assuming
Ψ = diag(ψ1, . . . , ψm), which would trigger an IIA assumption in the I-probit model.
We refer to this model as the independent I-probit model. The independence structure
causes the distribution of the latent variables to be y∗ij ∼ N(µk(xi), σ

2
j ) independently

for j = 1, . . . ,m, where σ2j = ψ−1
j . As a continuation of line (5.3), we can show the class

probabilities pij to be

pij =

∫
· · ·
∫

{y∗ij>y∗ik|∀k ̸=j}

m∏
k=1

{
ϕ(y∗ik|µk(xi), σ2k)dy∗ik

}

=

∫ m∏
k=1
k ̸=j

Φ

(
y∗ij − µk(xi)

σk

)
ϕ(y∗ij |µj(xi), σ2j )dy∗ij

= EZ

[
m∏
k=1
k ̸=j

Φ

(
σj
σk
Z +

µj(xi)− µk(xi)
σk

)]
(5.7)

where Z ∼ N(0, 1), Φ(·) its cdf, and ϕ(·|µ, σ2) is the pdf of X ∼ N(µ, σ2). Equation 5.3
is thus simplified to a unidimensional integral involving the Gaussian pdf and cdf, which
can be computed fairly efficiently using quadrature methods.
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5.3 Estimation

The premise of the I-probit model is having regression functions capture the dependence
of the covariates on a latent, continuous scale using I-priors, and then transforming
these regression functions onto a probability scale. Therefore, as with the normal I-prior
model, an estimate of the posterior regression function with optimised hyperparameters
is sought. A schematic diagram depicting the I-probit model is shown in Figure 5.2.

xi

fij

η

wij

y∗ij pij yi

αj

Ψ

h

g−1

i = 1, . . . , n

j = 1, . . . ,m

Figure 5.2: A directed acyclic graph (DAG) of the I-probit model. Observed or fixed
nodes are shaded, while double-lined nodes represents calculable quantities.

The log likelihood function for θ using all n observations {(y1, x1), . . . , (yn, xn)} is
obtained by performing the following integration:

L(θ|y) = log
∫∫

p(y|y∗, θ)p(y∗|w, θ)p(w|θ)dy∗ dw. (5.8)

Here, p(w|θ) is the pdf of MNn,m(0, In,Ψ), p(y∗|w, θ) is the pdf of MNn,m(1nα
⊤ +

Hηw, In,Ψ−1), and p(y|y∗, θ) =
∏n

i=1

∏m
j=1

[
y∗ij = max y∗

i·
][yi=j], with 00 := 1. Note

that, given the corresponding latent propensities y∗
i· = (y∗i1, . . . , y

∗
im)⊤, the distribution

yi|y∗
i· is tantamount to a degenerate categorical distribution: with knowledge of which

latent propensities is largest, the outcome of the categorical response becomes a certainty.

The integral appearing in (5.8) is of order 2nm, and so presents a massive compu-
tational challenge for classical numerical integration methods. This can be reduced by
either integrating out the random effects w or the latent propensities y∗ separately.
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Continuing on (5.8) gets us to either

L(θ) = log
∫
p(y|y∗, θ)p(y∗|θ)dy∗

= log
∫ { n∏

i=1

m∏
j=1

[
y∗ij = max y∗

i·
][yi=j]

}
ϕ(y∗|1nα

⊤,Ψ⊗H2
η +Ψ−1 ⊗ In)dy∗

= log
∫
∩n

i=1{y∗iyi>y∗ik|∀k ̸=yi}
ϕ(y∗|1nα

⊤,Ψ⊗H2
η +Ψ−1 ⊗ In)dy∗, (5.9)

by recognising that
∫
p(y∗|w, θ)p(w|θ)dw has a closed-form expression since it is an

integral involving two Gaussian densities, or

L(θ) = log
∫
p(y|w, θ) p(w|θ)dw

= log
∫ n∏

i=1

{
m∏
j=1

(
g−1
j

( µ(xi)︷ ︸︸ ︷
α+ w⊤hη(xi) |Ψ

))[yi=j]
ϕ(wi·|0,Ψ)dwi·

}
, (5.10)

where we have denoted the class probabilities pij from (5.3) using the function g−1
j (·|Ψ) :

Rm → [0, 1]. Unfortunately, neither of these two simplifications are particularly helpful.
In (5.9), the integral represents the probability of a mn-dimensional normal variate which
is not straightforward to calculate, because its covariance matrix is dense. In (5.10), the
integral has no apparent closed-form. The unavailability of an efficient, reliable way of
calculating the log-likelihood hampers hope of obtaining parameter estimates via direct
likelihood maximisation methods.

Furthermore, the posterior density of the regression function f = Hηw, which requires
the posterior density of w obtained via p(w|y) ∝ p(y|w)p(w), has normalising constant
equal to L(θ), which is intractable. The challenge of estimation is then to first overcome
this intractability by means of a suitable approximation of the marginalising integral. We
present three possible avenues to achieve this aim, namely the Laplace approximation,
a variational EM algorithm, and Markov chain Monte Carlo (MCMC) methods.

5.3.1 Laplace approximation

The focus here is to obtain the posterior density p(w|y) ∝ p(y|w)p(w) =: eR(w) which
has normalising constant equal to the marginal density of y, p(y) =

∫
eR(w) dw, as per

(5.10). Note that the dependence of the pdfs on θ is implicit, but is dropped for clarity.
Laplace’s method (Kass and Raftery, 1995, Sec. 4.1.1) entails expanding a Taylor series
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for R about its posterior mode ŵ = arg maxw p(y|w)p(w), which gives the relationship

R(w) = R(ŵ) +
���������:0

(w− ŵ)⊤∇R(ŵ) − 1

2
(w− ŵ)⊤Ω(w− ŵ) + · · ·

≈ R(ŵ) +−1

2
(w− ŵ)⊤Ω(w− ŵ),

because, assuming that R has a unique maximum, ∇R evaluated at its mode is zero.
This is recognised as the logarithm of an unnormalised Gaussian density, implying w|y ∼
Nn(ŵ,Ω−1). Here, Ω = −∇2R(w)|w=ŵ is the negative Hessian of Q evaluated at the
posterior mode, and is typically obtained as a byproduct of the maximisation routine of
R using gradient or quasi-gradient based methods.

The marginal distribution is then approximated by

p(y) =
∫

exp

≈ R(ŵ)− 1
2
(w−ŵ)⊤Ω(w−ŵ)︷ ︸︸ ︷
R(w)dw

≈ (2π)n/2|Ω|−1/2eR(ŵ)

∫
(2π)−n/2|Ω|1/2 exp

(
−1

2
(w− ŵ)⊤Ω(w− ŵ)

)
dw

= (2π)n/2|Ω|−1/2p(y|ŵ)p(ŵ).

The log marginal density of course depends on the parameters θ, which becomes the
objective function to maximise in a likelihood maximising approach. Note that, should
a fully Bayesian approach be undertaken, i.e. priors prescribed on the model parameters
using θ ∼ p(θ), then this approach is viewed as a maximum a posteriori approach.

In any case, each evaluation of the objective function L(θ) = log p(y|θ) involves
finding the posterior modes ŵ. This is a slow and difficult undertaking, especially for
large sample sizes n—even assuming computation of the class probabilities is efficient—
because the dimension of this integral is exactly the sample size. Perhaps, for a future
study, the integrated nested Laplace approximation (INLA, Rue et al., 2009) could be
looked at.

Standard errors for the parameters can be obtained from diagonal entries of the in-
formation matrix involving the second derivatives of log p(y). However, it is not known
whether the asymptotic variance of the parameters are affected by a Laplace approxi-
mation to the likelihood.

Lastly, as a comment, Laplace’s method only approximates the true marginal likeli-
hood well if the true posterior density function is small far away from the mode. In other
words, a second order approximation of R(w) must be be reliable for Laplace’s method
to be successful. This is typically the case if the posterior distribution is symmetric
about the mode and falls quickly in the tails.
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5.3.2 Variational EM algorithm

We turn to variational methods as a means of approximating the posterior densities of
interest and obtain parameter estimates. Variational methods are widely discussed in
the machine learning literature, but there have been efforts to popularise it in statistics
(Blei et al., 2017). Although variational inference is typically seen as a fully Bayesian
method, whereby approximate posterior densities are sought for the latent variables and
parameters, our goal is to apply variational inference to facilitate a pseudo maximum
likelihood approach.

Consider employing an EM algorithm, similar to the one seen in the previous chapter,
to estimate I-probit models. This time, treat both the latent propensities y∗ and the
I-prior random effects w as “missing”, so the complete data is {y,y∗,w}. Now, due to
the independence of the observations i = 1, . . . , n, the complete data log-likelihood is

L(θ|y,y∗,w) = log p(y,y∗,w|θ)

=

n∑
i=1

log p(yi|y∗
i·) + log p(y∗|w) + log p(w)

= const. +
�����1

2
log|Ψ| − 1

2
tr
(
Ψ(y∗ − 1nα

⊤ −Hηw)⊤(y∗ − 1nα
⊤ −Hηw)

)
������
−1

2
log|Ψ| − 1

2
tr
(
Ψ−1w⊤w

)
(5.11)

which looks like the complete data log-likelihood seen previously in (4.18) (Section 4.2.3,
p. 113), except that here, together with w, the y∗

i·’s are not observed.

For the E-step, it is of interest to determine the posterior density p(y∗,w|y) =

p(y∗|w,y)p(w|y). We have discerned from the discussion at the beginning of this section
that this is hard to obtain, since it involves an intractable marginalising integral. We
thus seek a suitable approximation

p(y∗,w|y, θ) ≈ q̃(y∗,w),

where q̃ satisfies q̃ = arg minq DKL(q∥p) = arg minq

∫
log q(y∗,w)

p(y∗,w|y,θ)q(y
∗,w)dz, subject

to certain constraints. The constraint considered by us in this thesis is that q satisfies a
mean-field factorisation

q(y∗,w) = q(y∗)q(w).

Under this scheme, the variational distribution for y∗ is found to be a conically truncated
multivariate normal distribution, and for w, a multivariate normal distribution.
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It can be shown that, for any variational density q, the marginal log-likelihood is an
upper-bound for the quantity Lq(θ) := L(q, θ) defined by

log p(y|θ) ≥ Ey∗,w∼q[log p(y,y∗,w|θ)]− Ey∗,w∼q[log q(y∗,w)] =: L(q, θ),

a quantity often referred to as the evidence lower bound (ELBO). It turns out that
minimising DKL(q∥p) is equivalent to maximising the ELBO, a quantity that is more
practical to work with than the KL divergence, and certainly more tractable than the
log marginal density. Hence, if q approximates the true posterior well, then the ELBO
is a suitable proxy for the marginal log-likelihood.

In practice, obtaining ML parameter estimates and the posterior density q(y∗,w)

which maximises the ELBO is achieved using a variational EM algorithm, an EM algo-
rithm in which the conditional distribution are replaced with a variational approxima-
tion. The t’th E-step entails obtaining the density q(t+1) as a solution to arg maxq L(q, θ),
keeping θ fixed at the current estimate θ(t). Let ȳ∗ = y∗−1nα

⊤. The objective function
to be maximised is computed as

Q(θ) = Ey∗,w∼q(t+1) [log p(y,y∗,w|θ)]

= const.− 1

2
tr
(
ΨE(w⊤H2

ηw) +Ψ−1 E(w⊤w)
)

− 1

2
tr
(
Ψ
{

E(y∗⊤y∗) + nαα⊤ − 2α1⊤
n E y∗ − 2E(w⊤)Hη

(
E y∗ − 1nα

⊤)}),
(5.12)

and this is maximised with respect to θ in the M-step to obtain θ(t+1). The algorithm
alternates between the E- and M-step until convergence of the ELBO. A full derivation
of the variational EM algorithm used by us will be described in Section 5.4.

5.3.3 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods is the tool of choice for a complete
Bayesian analysis of multinomial probit models (McCulloch et al., 2000; Nobile, 1998).
Albert and Chib (1993) showed that a data augmentation approach, i.e. the latent vari-
able approach, to probit models can be analysed using exact Bayesian methods, due to
the underlying normality structure. Paired with corresponding conjugate prior choices,
sampling from the posterior is very simple using a Gibbs sampling approach. That is,
assuming a prior distribution on the parameters θ ∼ p(θ), the model with likelihood
given by (5.8) obtains posterior samples {y∗(t),w(t), θ(t)}Tt=1 from their respective Gibbs
conditional distributions. In particular, y∗|y,w, θ is distributed according to a truncated
multivariate normal, while w|y,y∗, θ a multivariate normal. These conditional distri-
butions are exactly of the same form as the ones obtained under a variational scheme.
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The difference is that in MCMC, sampling from posterior distributions is performed,
whereas in a variational inference framework, a deterministic update of the variational
distributions is performed.

A downside to the data augmentation scheme for probit models in a MCMC frame-
work is that it enlarges the variable space by an additional nm dimensions, which is
memory inefficient for large n. The models with likelihood (5.9) or (5.10) after inte-
grating out w and y∗ respectively, is less demanding for MCMC sampling than the
model with likelihood (5.8). However, as mentioned already, (5.9) contains an integral
involving an mn-variate normal distribution whose covariance matrix is dense, and as
far as we are aware, the Kronecker product structure cannot be exploited for efficiency
in sampling. This leaves (5.10), a non-conjugate model whose full conditional densities
are not of recognisable form. Hamiltonian Monte Carlo (HMC) is another possibility,
since it does not require conjugacy. For binary models, this is a feasible approach be-
cause the class probabilities normal cdfs (c.f. Equation 5.6), which means that it is
doable using off-the-shelf software such as Stan. However, with multinomial responses,
the arduous task of computing class probabilities, which involve integration of an at
most m-dimensional normal density, must be addressed separately.

5.3.4 Comparison of estimation methods

In this subsection, we utilise a toy binary classification data set which has been simulated
according to a spiral pattern, as in Figure 5.3. The predictor variables are X1 and X2,
each of which are scaled similarly. Following (5.6), the binary I-probit model that is
fitted is

yi ∼ Bern(pi)

Φ−1(pi) = α+

f(xi)︷ ︸︸ ︷
n∑

k=1

hλ(xi, xk)wk

w1, . . . , wn
iid∼ N(0, 1),

where hλ is the (scaled) kernel of the fBm-0.5 RKHS F to which f belongs.

We carry out the three estimation precodures described above (Laplace’s method,
variational EM, and HMC) to compare parameter estimates, (training) error rates, and
runtime. The Laplace and variational EM methods were performed in the iprobit pack-
age, while Stan was used to code the HMC sampler. Prior choices for the fully Bayesian
methods were: 1) a vague folded-normal prior λ ∼ N+(0, 100) for the RKHS scale pa-
rameter, and 2) a diffuse prior for the intercept p(α) ∝ const. Note that the restriction
of λ to the positive orthant is required for identifiability. The results are presented in
Table 5.1.
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Figure 5.3: A scatter plot of simulated spiral data set.

The three methods pretty much concur on the estimation of the intercept, but not
on the RKHS scale parameter. As a result, the log-density value calculated at the
parameter estimates is also different in all three methods. Notice the high posterior
standard deviation for the scale parameter in the HMC method. The posterior density
for λ was very positively skewed, and this contributed to the large posterior mean.

Table 5.1: Table comparing the estimated parameter values, (marginal) log-likelihood
values, and also time taken (in seconds) for the three estimation methods.

Laplace approximation Variational EM Hamiltonian MC
Intercept (α) -0.02 (0.03) 0.00 (0.06) 0.00 (0.58)
Scale (λ) 0.85 (0.01) 5.67 (0.23) 29.3 (5.21)
Log-density -171.8 -43.2 -8.5
Error rate (%) 44.7 0.00 0.00
Brier score 0.20 0.02 0.01
Iterations 20 56 2000
Time taken (s) >3600 5.32 >1800

A plot of the log-likelihood (or ELBO) surface for three methods in Figure 5.4 reveals
some insight. The variational likelihood has two ridges, with the maxima occurring
around the intersection of these two ridges. The Laplace likelihood seems to indicate a
similar shape—in both the Laplace and variational method, the posterior distribution
of w is approximated by a Gaussian distribution, with different means and variances.
However, parts of the Laplace likelihood are poorly approximated resulting in a loss of
fidelity around the supposed maxima, which might have contributed to the set of values
that were estimated. Laplace’s method is known to yield poor approximations to probit
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(a) Laplace approximation
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(b) Variational EM
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(c) Hamiltonian MC

Figure 5.4: Plots showing predicted probabilities (shaded region) for belonging to class
‘1’ or ‘2’ indicated by colour and intensity, and log-likelihood/ELBO surface plots for
(a) Laplace’s method, (b) variational EM, and (c) HMC. For the likelihood plot relating
to Hamiltonian Monte Carlo, parameters are treated as fixed, and the mean log-density
of the I-probit model recorded.
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model likelihoods (Kuss and Rasmussen, 2005). On the other hand, the log-likelihood
calculated using an HMC sampler (treating parameters as fixed values) yields a slightly
different graph: the log-likelihood increases as values of α become larger, resulting in
the upwards inflection of the log-likelihood surface (as opposed to a downward inflection
seen in the variational and Laplace likelihood).

In terms of predictive abilities, both the variational and HMC methods, even though
the posteriors are differently estimated, have good predictive performance as indicated
by their error rates and Brier scores2. Figure 5.4 shows that HMC is more confident of
new data predictions compared to variational inference, as indicated by the intensity of
the shaded regions (HMC is shaded stronger than variational EM). Laplace’s method
gave poor predictive performance.

Finally, on the computational side, variational inference was by far the fastest method
to fit the model. Sampling using HMC was very slow, because the parameter space is
in effect O(n + 2) (parameters are {w1, . . . , wn, α, λ} under the model with likelihood
(5.10), i.e. without the data augmentation scheme). As for Laplace, each Newton step
involves obtaining posterior modes of the wi’s, and this contributed to the slowness of this
method. The reality is that variational inference takes seconds to complete what either
the Laplace or full MCMC methods would take minutes or even hours to. The predictive
performance, while not as good as HMC, is certainly an acceptable compromise in favour
of speed.

5.4 The variational EM algorithm for I-probit models

We present an EM algorithm to estimate the I-probit latent variables y∗ and w, in which
the E-step consists of a mean-field variational approximation of the conditional density
p(y∗,w|y, θ) = q(y∗)q(w). As per assumptions A4, A5 and A6, the parameters of the
I-probit model consists of θ = {α = (α1, . . . , αm)⊤, η}.

The algorithm cycles through a variational inference E-step, in which the variational
density q(y∗,w) =

∏n
i=1 q(y∗

i·)q(w) is optimised with respect to the Kullback-Leibler di-
vergence DKL

(
q(y∗,w)∥p(y∗,w|y)

)
, and an M-step, in which the approximate expected

joint density (5.12) is maximised with respect to the parameters θ. Convergence is as-
sessed by monitoring the ELBO. Apart from the fact that the variational EM algorithm
uses approximate conditional distributions and involves matrices y∗ and w, it is very
similar to the EM described in Chapter 4, and as such, the efficient computational work
derived there is applicable.

2The Brier score is defined as 1
n

∑n
i=1

∑m
j=1(yij − p̂ij) with yij = 1 if yi = j and zero otherwise, and

p̂ij is the fitted probability P̂(yi = j). It gives a better sense of training/test error, compared to simple
misclassification rates, by accounting for the forecasted probabilities of the events happening. The Brier
score is a proper scoring rule, i.e. it is uniquely minimised by the true probabilities.
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5.4.1 The variational E-step

Let q̃(y∗,w) be the pdf that minimises the Kullback-Leibler divergence DKL
(
q∥p
)

subject
to the mean-field constraint q(y∗,w) = q(y∗)q(w). By appealing to Bishop (2006, Eq.
10.9, p. 466), the optimal mean-field variational density q̃ for the latent variables y∗ and
w satisfy

log q̃(y∗) = Ew∼q̃[log p(y,y∗,w)] + const. (5.13)

log q̃(w) = Ey∗∼q̃[log p(y,y∗,w)] + const. (5.14)

where p(y,y∗,w) = p(y|y∗)p(y∗|w)p(w) is as per (5.8). We now present the variational
densities q̃(y∗) and q̃(w). For further details on the derivation of these densities, please
refer to Appendix H (p. 303).

Variational distribution for the latent propensities y∗

The fact that the rows y∗
i· ∈ Rm, i = 1, . . . , n of y∗ ∈ Rn×m are independent can be

exploited, and this results in a further induced factorisation q(y∗) =
∏n

i=1 q(y∗
i ). Define

the set Cj = {y∗ij > y∗ik | ∀k ̸= j}. Then q(y∗
i·) is the density of a multivariate normal

distribution with mean µ̃i· = α + w̃⊤hη(xi), where w̃ = Ew∼q̃(w), and variance Ψ−1,
subject to a truncation of its components to the set Cyi . That is, for each i = 1, . . . , n

and noting the observed categorical response yi ∈ {1, . . . ,m} for the i’th observation,
the y∗

i ’s are distributed according to

y∗
i·

iid∼

Nm(µ̃i·,Ψ−1) if y∗iyi > y∗ik, ∀k ̸= yi

0 otherwise.
(5.15)

We denote this by y∗
i·

iid∼ tN(µ̃i·,Ψ−1, Cyi), and the important properties of this distri-
bution are explored in the appendix.

The required expectation ỹ∗
i := Ey∗

i∼q̃(y∗
i·) = Ey∗∼q̃(y

∗
i1, . . . , y

∗
im)⊤ in the M-step can

be tricky to obtain. One strategy that can be considered is Monte Carlo integration:
using samples from Nm(µ̃i·,Ψ−1), disregard those that do not satisfy the condition
y∗iyi > y∗ik,∀k ̸= j, and then take the sample average. This works reasonably well so long
as the truncation region does not fall into the extreme tails of the multivariate normal.
Alternatively, a Gibbs-based approach (Robert, 1995) for sampling from a truncated
multivariate normal can be implemented, and this is detailed in Appendix C.4.

If the independent I-probit model is under consideration, whereby the covariance
matrix has the independent structure Ψ = diag(σ−2

1 , . . . , σ−2
m ), then the first moment
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can be considered componentwise. Each component of this expectation is given by

ỹ∗ik =


µ̃ik − σkC−1

i

∫
ϕik(z)

∏
l ̸=k,yi

Φil(z)ϕ(z)dz if k ̸= yi

µ̃iyi − σyi
∑

k ̸=yi

(
ỹ∗ik − µ̃ik

)
if k = yi

(5.16)

with
ϕik(Z) = ϕ

(
σyi
σk
Z +

µ̃iyi − µ̃ik
σk

)
Φik(Z) = Φ

(
σyi
σk
Z +

µ̃iyi − µ̃ik
σk

)
Ci =

∫ ∏
l ̸=j

Φil(z)ϕ(z)dz

and Z ∼ N(0, 1) with pdf and cdf ϕ(·) and Φ(·) respectively. The integrals that appear
above are functions of a unidimensional Gaussian pdf, and these can be computed rather
efficiently using quadrature methods.

Variational distribution for the I-prior random effects w

Given that both vec y∗| vec w and vec w are normally distributed as per the model (5.5),
we find that the full conditional distribution p(w|y∗,y) ∝ p(y∗,y,w) ∝ p(y∗|w)p(w) is
also normal. The variational density q for vec w ∈ Rnm is found to be Gaussian with
mean and precision given by

vec w̃ = Ṽw(Ψ⊗Hη) vec(ỹ∗ − 1nα
⊤) and Ṽ−1

w = Ψ⊗H2
η +Ψ−1 ⊗ In = Vy∗ .

(5.17)

As a computational remark, computing the inverse Ṽ−1
w presents a challenge, as this takes

O(n3m3) time if computed naïvely. By exploiting the Kronecker product structure in
Ṽw, we are able to efficiently compute the required inverse in roughly O(n3m) time—see
Section 5.6.2 for details. Storage requirement is O(n2m2), as a result of the covariance
matrix in (5.17).

If the independent I-probit model is assumed, i.e. Ψ = diag(ψ1, . . . , ψm), then the
posterior covariance matrix Ṽw has a simpler structure which implies column indepen-
dence in the matrix w. By writing w·j = (w1j , . . . , wnj)

⊤ ∈ Rn, j = 1, . . . ,m, to denote
the column vectors of w, and with a slight abuse of notation, we have that

Nnm(vec w| vec w̃, Ṽw) =

m∏
j=1

Nn(w·j |w̃·j , Ṽwj ),

where Nd(x|µ,Σ) is the pdf of x ∼ N(µ,Σ), and

w̃·j = ψjṼwjHη(ỹ∗
j − αj1n) and Ṽwj =

(
ψjH2

η + ψ−1
j In

)−1
.

5.4 The variational EM algorithm for I-probit models 165



We note the similarity between (5.17) above and the posterior distribution for the I-
prior random effects in a normal model (4.14) seen in the previous chapter, with the
difference being (5.17) uses the continuous latent propensities y∗ instead of the the
observations y. The consequence of this is that the posterior regression functions are
class independent, the exact intended effect by specifying a diagonal precision matrix
Ψ. Storage requirement is O(n2m), since we need Vw1 , . . . ,Vwm .

Remark 5.2. The variational distribution q(w) which approximates p(w|y) is in fact
exactly p(w|y∗), the conditional density of the I-prior random effects given the latent
propensities. By the law of total expectations,

E(r(w)|y) = Ey∗
(

E(r(w)|y∗)
∣∣y),

where r(·) is some function of w, and expectations are taken under the posterior distri-
bution of y∗. Hypothetically, if the true pdf p(y∗|y) were tractable, then the E-step can
be computed using the true conditional distribution. Since it is not tractable, we resort
to an approximation, and in the case of a variational approximation, (5.17) is obtained.

5.4.2 The M-step

From (5.12), the function to be maximised in the M-step is

Q(θ) = Ey∗,w∼q(t+1) [log p(y,y∗,w|θ)]

= const.− 1

2
tr
(
ΨE(w⊤H2

ηw) +Ψ−1 E(w⊤w)
)

− 1

2
tr
(
Ψ
{

E(y∗⊤y∗) + nαα⊤ − 2α1⊤
n E y∗ − 2E(w⊤)Hη

(
E y∗ − 1nα

⊤)}),
where expectations are taken with respect to the variational distributions of y∗ and w.
Note that since Ψ is treated as fixed, the term E(y∗⊤y∗) is absorbed into the constant.
On closer inspection, the trace involving the second moments of w is found to be

tr
(
ΨE(w⊤H2

ηw) +Ψ−1 E(w⊤w)
)
=

m∑
i,j=1

{
ψij tr(H2

ηW̃ij) + ψ−
ij tr(W̃ij)

}
by the results of the derivations in Appendix H.1.2 (p. 307). In the above, we had
defined ψ−

ij to be the (i, j)’th element of Ψ−1, and

W̃ij = E(w·iw⊤
·j) = Vw[i, j] + w̃·iw̃⊤

·j ,

where Vw[i, j] ∈ Rn×n refers to the (i, j)’th submatrix block of Vw, and the n-vector
w̃·j =

(
Ewij

)n
i=1

is the expected value of the random effects for class j. Specifically,
when the error precision is of the form Ψ = diag(ψ1, . . . , ψm), this trace reduces to
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tr
(
ΨE(w⊤H2

ηw) +Ψ−1 E(w⊤w)
)
=

m∑
j=1

{
ψj tr(H2

ηW̃jj) + ψ−1
j tr(W̃jj)

}

=

m∑
j=1

tr
(
(

Σθ,j︷ ︸︸ ︷
ψjH2

η + ψ−1
j In)W̃jj

)

The bulk of the computational effort required to evaluate Q(θ) stems from the trace
involving the second moments of w, and the fact that H2

η needs to be reevaluated each
time θ = {α, η} changes. As discussed previously, each E-step takes O(n3m) time to
compute the required first and second (approximate) posterior moments of w. Once
this is done, we can use the “front-loading of the kernel matrices” trick described in
Section 4.3.2, which effectively renders the evaluation of Q to be linear in θ (after an
initial O(n2) procedure at the beginning).

As in the normal linear model, we employ a sequential update of the parameters (à
la expectation conditional maximisation algorithm) by solving the first order conditions

∂

∂η
Q(η|α) = −1

2

m∑
i,j=1

ψij tr
(
∂H2

η

∂η
W̃ij

)
+ tr

(
Ψw̃⊤∂Hη

∂η
(ỹ∗ − 1nα

⊤)

)
(5.18)

∂

∂α
Q(α|η) = 2nΨα− 2

n∑
i=1

Ψ
(
y∗
i· − w̃⊤hη(xi)

)
(5.19)

equated to zero, where hη(xi) ∈ Rn is the i’th row of the kernel matrix Hη. We now
present the update equations for the parameters.

Update for kernel parameters η

When only ANOVA RKHS scale parameters are involved, then the conditional solution of
η to (5.18) can be found in closed-form, much like in the exponential family EM algorithm
described in Section 4.3.3 (p. 122). Under the same setting as in that subsection,
assume that only η = {λ1, . . . , λp} need be estimated, and for each k = 1, . . . , p, we
can decompose the kernel matrix as Hη = λkRk + Sk and its square as H2

η = λ2kR2
k +

λkUk + S2
k. As a follow-on from (5.18), the conditional solution for λk given the rest of

the parameters is obtained by solving

∂

∂λk
Q(λk|α,λ−k) = −

1

2

m∑
i,j=1

ψij tr
(
(2λkR2

k + Uk)W̃ij

)
+ tr

(
Ψw̃⊤Rk(ỹ∗ − 1nα

⊤)
)

= − λk
m∑

i,j=1

ψij tr(R2
kW̃ij)−

1

2

m∑
i,j=1

ψij tr(UkW̃ij)

+ tr
(
Ψw̃⊤Rk(ỹ∗ − 1nα

⊤)
)
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equals zero. This yields the solution

λ̂k =
tr
(
Ψw̃⊤Rk(ỹ∗ − 1nα

⊤)
)
− 1

2

∑m
i,j=1 ψij tr(UkW̃ij)∑m

i,j=1 ψij tr(R2
kW̃ij)

In the case of the independent I-probit model, where Ψ = diag(ψ1, . . . , ψm), λ̂k has the
form

λ̂k =

∑m
j=1 ψj

(
w̃⊤·jRk(ỹ∗·j − αj1n)− 1

2 tr(UkW̃jj)
)

∑m
j=1 ψj tr(R2

kW̃jj)
.

Remark 5.3. There is no closed-form solution for η when the polynomial kernel is used,
or when there are kernel parameters to optimise (e.g. Hurst coefficient or SE kernel
lengthscale). In these situations, solutions for η are obtained using numerical methods
(i.e. employ quasi-Newton methods such as an L-BFGS algorithm for optimising Q(η)).

Update for intercepts α

It is easy to see that the unique solution to (5.19) is

α̂ =
1

n
Ψ−1

(
n∑

i=1

Ψ
(
y∗
i· − w̃⊤hη(xi)

))
=

1

n

n∑
i=1

(
y∗
i· − w̃⊤hη(xi)

)
∈ Rm.

Being free of Ψ, the solution is the same whether the full or independent I-probit model
is assumed. Furthermore, we must have that

∑m
j=1 αj = 0 for identifiability, so as an

additional step to satisfy this condition, the solution α̂ is centred.

5.4.3 Summary

Notice that the evaluation of each component of the posterior depends on knowing the
posterior distribution of the other, i.e. q(y∗) depends on q(w) and vice-versa. Simi-
larly, each parameter update is obtained conditional upon the value of the rest of the
parameters. These circular dependencies are dealt with by way of an iterative updating
scheme: with arbitrary starting values for the distributions q(0)(y∗) and q(0)(w), and for
the parameters θ(0), each are updated in turn according to the above derivations.

The updating sequence is repeated until no significant increase in the convergence
criterion, the ELBO, is observed. The ELBO for the I-probit model is given by the
quantity

Lq(θ) =
nm

2
+

n∑
i=1

logCi(θ) +
1

2
log|Ṽw| −

n

2
log|Ψ| − 1

2

m∑
i,j=1

ψ−
ij tr(W̃ij), (5.20)
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where ψ−
ij is the (i, j)’th entry of Ψ−1, and Ci(θ) is the normalising constant of the

density of tNm(α+ w̃⊤hη(xi),Ψ
−1, Cyi), with Cyi = {y∗iyi > y∗ik|∀k ̸= yi}. That is,

Ci(θ) =

∫
· · ·
∫

{y∗iyi>y∗ik | ∀k ̸=yi}

ϕ(y∗i1, . . . , y
∗
im|α+ w̃⊤hη(xi),Ψ

−1)dy∗i1 · · · dy∗im.

Similar to the EM algorithm, each iteration of the algorithm increases the ELBO to a
stationary point (Blei et al., 2017). Unlike the EM algorithm though, the variational
EM algorithm does not guarantee an increase in the marginal log-likelihood at each step,
nor does it guarantee convergence to the global maxima of the log-likelihood.

Further, the ELBO expression to be maximised is often not convex, which means the
algorithm may terminate at local modes, for which there may be many. Note that the
variational distribution with the higher ELBO value is the distribution that is closer,
in terms of the KL divergence, to the true posterior distribution. In our experience,
multiple random starts alleviates this issue for the I-probit model.

5.5 Post-estimation

Post-estimation procedures such as obtaining predictions for a new data point, the cred-
ibility interval for such predictions, and model comparison, are of interest. These are
performed in an empirical Bayes manner using the variational posterior density of the
regression function obtained from the output of the variational EM algorithm.

We first describe prediction of a new data point xnew. Step one is to determine the
distribution of the posterior regression functions in each class, f(xnew) = w⊤hη(xnew),
where hη(xnew) is the vector of length n containing entries hη(xi, xnew), given values for
the parameters θ of the I-probit model. To this end, we use the ELBO estimates for θ,
i.e. θ̂ = arg maxθ Lq(θ), as obtained from the variational EM algorithm. As we know,
the variational distribution of vec w is normally distributed with mean and variance
according to (5.17). By writing vec w̃ = (w̃·1, . . . , w̃·m)⊤ to separate out the I-prior
random effects per class, we have that w·j |θ̂ ∼ Nn(w̃·j , Ṽw[j, j]), and Cov(w·j ,w·k) =
Ṽw[j, k], where the ‘[·, ·]’ indexes the n×n sub-block of the block matrix Vw. Thus, for
each class j = 1, . . . ,m and any x ∈ X ,

fj(x)|y, θ̂ ∼ N
(

hη̂(x)
⊤w̃·j , hη̂(x)

⊤Ṽw[j, j]hη̂(x)
)
,

and the covariance between the regression functions in two different classes is

Cov
(
fj(x), fk(x)|y, θ̂

)
= hη̂(x)

⊤Ṽw[j, k] h̃η̂(x).
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Algorithm 1 Variational EM for the I-probit model (fixed Ψ)
1: procedure Initialisation
2: Initialise θ(0) ← {α(0), η(0)}
3: q̃(0)(w)← MN(0, In,Ψ)
4: q̃(0)(y∗

i·)← tNm(α̃(0),Ψ−1, Cyi)
5: t← 0
6: end procedure

7: while not converged do
8: procedure Variational E-step
9: for i = 1, . . . , n do ▷ Update y∗

10: q̃(t+1)(y∗
i·)← tNm

(
α̃(t) + w̃(t)⊤hη(t)(xi),Ψ, Cyi

)
11: ỹ∗(t+1)

i· ← Eq(t+1)(y∗
i·)

12: end for

13: Ṽ(t+1)
w ←

(
Ψ⊗H2

η(t)
+Ψ−1 ⊗ In

)−1
▷ Update w

14: vec w̃(t+1) ← Ṽ(t+1)
w (Ψ⊗Hη(t)) vec(ỹ∗(t+1) − 1nα

(t)⊤)

15: q̃(t+1)(w)← Nnm

(
vec w̃(t+1), Ṽ(t+1)

w

)
16: end procedure

17: procedure M-step
18: if ANOVA kernel (closed-form updates) then ▷ Update η
19: for k = 1, . . . , p do
20: T1k ←

∑m
i,j=1 ψij tr(R2

kW̃ij)

21: T2k ← tr
(
Ψw̃⊤Rk(ỹ∗ − 1nα

⊤)
)
− 1

2

∑m
i,j=1 ψij tr(UkW̃ij)

22: λ
(t+1)
k ← T2k/T1k

23: end for
24: else
25: η(t+1) ← arg maxη Q(η|α(t)) by L-BFGS algorithm
26: end if

27: a← 1
n

∑n
i=1

(
ỹ∗(t+1)
i· − w̃(t+1)⊤h̃η(t+1)(xi)

)
▷ Update α

28: α(t+1) ← a− 1
m

∑m
j=1 aj

29: end procedure

30: Calculate ELBO L(t+1)

31: t← t+ 1

32:
{
q̃(y∗), q̃(w), θ̂

}
←
{
q̃(t)(y∗), q̃(t)(w), θ(t)

}
33: return Variational densities {q̃(y∗), q̃(w)}
34: return Estimates {α̂, η̂}
35: return ELBO Lq(θ) = L(t)
36: end while
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Then, in step two, using the results obtained in the previous chapter in Section 4.4 (p.
125), we have that the latent propensities y∗new,j for each class are normally distributed
with mean, variance, and covariances

E(y∗new,j |y, θ̂) = α̂j + E
(
fj(xnew)|y, θ̂

)
=: µ̂j(xnew)

Var(y∗new,j |y, θ̂) = Var
(
f(xnew)|y, θ̂

)
+Ψ−1

jj =: σ̂2j (xnew)

Cov(y∗new,j , y
∗
new,k|y, θ̂) = Cov

(
fj(x), fk(x)|y, θ̂

)
+Ψ−1

jk =: σ̂jk(xnew).

From here, step three would be to extract class information of data point xnew, which
are contained in the normal distribution Nm

(
µ̂new, V̂new

)
, where

µ̂new =
(
µ1(xnew), . . . , µm(xnew)

)⊤ and V̂new,jk =

σ̂2j (xnew) if j = k

σ̂jk(xnew) if j ̸= k.

The predicted class is inferred from the latent variables using

ŷnew = arg max
k

µ̂k(xnew),

while the probabilities for each class are obtained by way of integration of a multivariate
normal density, as per (5.3):

p̂new,j =

∫
· · ·
∫

{y∗j>y∗k|∀k ̸=j}

ϕ(y∗1, . . . , y
∗
m|µ̂new, V̂new)dy∗1 · · · dy∗m. (5.21)

For the independent I-probit model, class probabilities are obtained in a more compact
manner via

p̂new,j = EZ

[
m∏
k=1
k ̸=j

Φ

(
σ̂j(xnew)

σ̂k(xnew)
Z +

µ̂j(xnew)− µ̂k(xnew)

σ̂2k(xnew)

)]
,

as per (5.7), since the m components of f(xnew), and hence the y∗
new,j ’s, are independent

of each other (Ψ and V̂new are diagonal). Prediction of a single new data point takes
O(n2m) time, because there are essentially m I-prior posterior regression functions, and
each take O(n2) to evaluate. This is assuming negligible time to compute the class
probabilities.

We are able to take advantage of the Bayesian machinery to obtain credibility intervals
for probability estimates or any transformation of these probabilities (e.g. log odds
or odds ratios). The procedure is as follows. First, obtain samples w(1), . . . ,w(T ) by
drawing from its variational posterior distribution vec w(t)|θ̂ ∼ Nnm(vec w̃,Vw). Then,
obtain samples of class probabilities {p(1)xj , . . . , p

(T )
xj }mj=1, for a given data point x ∈ X by
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evaluating
p
(t)
xj =

∫
· · ·
∫

{y∗j>y∗k|∀k ̸=j}

ϕ
(
y∗1, . . . , y

∗
m|µ̂(t)(x), V̂(x)

)
dy∗1 · · · dy∗m,

where µ̂(t)(x) = α̂+w(t)⊤hη̂(x), and V̂(x)jk equals σ̂2j (x) if j = k, and σ̂jk(x) otherwise.
To obtain a statistic of interest, say, a 95% credibility interval of a function r(pxj) of the
probabilities, simply take the empirical lower 2.5th and upper 97.5th percentile of the
transformed sample

{
r(p

(1)
xj ), . . . , r(p

(T )
xj )

}
.

Remark 5.4. Unfortunately, with the variational EM algorithm, standard errors for the
parameters θ are not so easy to obtain. We could not ascertain as to the availability
of an unbiased estimate of the asymptotic covariance matrix for θ under a variational
framework. One strategy for obtaining standard errors is bootstrap (Chen et al., 2018):

1. Obtain θ̂ = arg maxθ Lq(θ) using S = {(y1, x1), . . . , (yn, xn)}.

2. For t = 1, . . . , T , do

(a) Obtain S(t) = {(y(t)1 , x
(t)
1 ), . . . , (y

(t)
n , x

(t)
n )} by sampling n points with replace-

ment from S.

(b) Compute θ̂(t) = arg maxθ Lq(θ) using the data S(t).

3. For the l’th component of θ, compute its variance estimator using

V̂ar(θ̂l) =
1

T

T∑
t=1

(θ̂
(t)
l − θ̄l)

2 where θ̄l =
1

T

T∑
t=1

θ̂
(t)
l .

The obvious potential downside to this bootstrapp scheme is computational time.

Finally, a discussion on model comparison, which, in the variational inference liter-
ature, is achieved by comparing ELBO values of competing models (Beal and Ghahra-
mani, 2003). The rationale is that the ELBO serves as a conservative estimate for the
log marginal likelihood, which would allow model selection via (empirical) Bayes factors.
This stems from the fact that

log p(y|θ) = Lq(θ) + DKL(q∥p) > Lq(θ),

since the Kullback-Leibler divergence from the true posterior density p(y∗,w|y) to the
variational density q(y∗,w) is strictly positive (it is zero if and only if the two densi-
ties are equivalent), and is minimised under a variational inference scheme. Kass and
Raftery (1995) suggest Section 5.5 as a way of interpreting observed Bayes factor values
BF(M1,M0) for comparing model M1 against model M0, where BF(M1,M0) is approx-
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imated by
BF(M1,M0) ≈

Lq(θ|M1)

Lq(θ|M0)
,

and Lq(θ|Mk), k = 0, 1, is the ELBO for model Mk. It should be noted that while this
works in practice, there is no theoretical basis for model comparison using the ELBO
(Blei et al., 2017).

Table 5.2: Guidelines for interpreting Bayes factors (Kass and Raftery, 1995).

2 log BF(M1,M0) BF(M1,M0) Evidence against M0

0–2 1–3 Not worth more than a bare mention
2–6 3–20 Positive
6–10 20–150 Strong
>10 >150 Very strong

Remark 5.5. In the previous chapter on normal I-prior models, the I-prior could be
integrated out of the model completely, resulting in a normal log-likelihood for the
parameters. Model comparison can be validly done using likelihood ratio tests and
asymptotic chi-square distributions. Here however, we only have a lower bound to the
log-likelihood, and most likely the asymptotic results of likelihood ratio tests do not
hold. Then, the concept of approximate (empirical) Bayes factors seem most intuitive,
even if not rooted in theory.

5.6 Computational considerations

Computational challenges for the I-probit model stems from two sources: 1) calculation
of the class probabilities (5.3); and 2) storage and time requirements for the variational
EM algorithm. Ways in which to overcome these challenges are discussed. In addition,
we also discuss considerations to take into account if estimation of the error precision Ψ

is desired, and thus pave the way for future work.

5.6.1 Efficient computation of class probabilities

The issue at hand here is that for m > 4, the evaluation of the class probabilities in
(5.3) is computationally burdensome using classical methods such as quadrature meth-
ods (Geweke et al., 1994). As such, simulation techniques are employed instead. The
simplest strategy to overcome this is a frequency simulator (otherwise known as Monte
Carlo integration): obtain random samples from Nm

(
µ(xi),Ψ

−1
)
, and calculate how

many of these samples fall within the required region. This method is fast and yields
unbiased estimates of the class probabilities. However, in an extensive comparative
study of various probability simulators, Hajivassiliou et al. (1996) concluded that the
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Geweke-Hajivassiliou-Keane (GHK) probability simulator (Geweke, 1989; Hajivassiliou
and McFadden, 1998; Keane and Wolpin, 1994) is the most reliable under a multitude
of scenarios. This is now described, and for clarity, we drop the subscript i denoting
individuals.

Suppose that an observation y = j has been made. Reformulate y∗ in (5.1) by
anchoring on the j’th latent variable y∗j to obtain

z := (

z1︷ ︸︸ ︷
y∗1 − y∗j , . . . ,

zj−1︷ ︸︸ ︷
y∗j−1 − y∗j ,

zj︷ ︸︸ ︷
y∗j+1 − y∗j , . . . ,

zm−1︷ ︸︸ ︷
y∗m − y∗j , )⊤ ∈ Rm−1.

Note that we have indexed the vector z using j′ = k if k < j, and j′ = k− 1 if k > j for
k = 1, . . . ,m, so that the index j′ runs from 1 to m−1. Let Q(j) ∈ R(m−1)×m be a matrix
formed by inserting a column of minus ones at the j’th position in an (m − 1) identity
matrix. We can then write z = Q(j)y∗, and thus we have that z ∼ Nm−1(ν(j),Ω(j)),
where ν(j) = Q(j)µ(xi) and Ω(j) = Q(j)Ψ

−1Q⊤
(j). These are indexed by ‘(j)’ because

the transformation is dependent on which latent variable the z’s are anchored on.

Remark 5.6. Incidentally, the probit model in (5.1) is equivalently represented by

yi =

1 if max(y∗i2 − y∗i1, . . . , y∗im − y∗i1) < 0

j if max(y∗i2 − y∗i1, . . . , y∗im − y∗i1) = y∗ij − y∗i1 ≥ 0,
(5.22)

which is obtained by anchoring on the first latent variable (referred to as the reference
category), although the choice of reference category is arbitrary. This is similar to fixing
the latent variables of the reference category to zero, and thus, as discussed previously
in Section 5.2, full identification is achieved by fixing one more element of the covariance
matrix.

For the symmetric and positive definite covariance matrix Ω(j), obtain its Cholesky
decomposition as Ω(j) = LL⊤, where L is a lower triangular matrix. Then, z = ν(j)+Lζ,
where ζ ∼ Nm−1(0, Im−1). That is,

z1

z2
...

zm−1

 =


ν(j)1

ν(j)2
...

ν(j)m−1

+


L11

L21 L22

...
... . . .

Lm−1,1 Lm−1,2 · · · Lm−1,m−1




ζ1

ζ2
...

ζm−1



=


ν(j)1 + L11ζ1

ν(j)2 +
∑2

k=1 Lk2ζk
...

ν(j)m−1 +
∑m−1

k=1 Lk,m−1ζk

 .
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With this setup, the probability pj of an observation belonging to class j, which is
equivalent to the probability that each zj′ < 0, j′ = 1, . . . ,m− 1, can be expressed as

pj = P(z1 < 0, . . . , zm−1 < 0)

= P(ζ1 < u1, . . . , ζm−1 < um−1)

= P(ζ1 < u1)P(ζ2 < u2|ζ1 < u1)P(ζ3 < u3|ζ1 < u1, ζ2 < u2) · · ·

· · ·P(ζm−1 < um−1|ζ1 < u1, . . . , ζm−2 < um−2),

where

uj′ = uj′(ζ1, . . . , ζj′−1) =

−ν(j)1/L11 for j′ = 1

−
(
ν(j)j′ +

∑j′−1
k=1 Lkj′ζk

)
/Lj′j′ for j′ = 2, . . . ,m− 1

The GHK algorithm entails making draws from one-sided right truncated standard
normal distributions (for instance, using an inverse transform method detailed in Ap-
pendix C.3, p. 280):

• Draw ζ̃1 ∼ tN(0, 1,−∞, u1).

• Draw ζ̃2 ∼ tN(0, 1,−∞, ũ2), where ũ2 = u2(ζ̃1).

• Draw ζ̃3 ∼ tN(0, 1,−∞, ũ3), where ũ3 = u3(ζ̃1, ζ̃2).

• · · ·

• Draw ζ̃m−1 ∼ tN(0, 1,−∞, ũm−2), where ũm−1 = um(ζ̃1, . . . , ζ̃m−2).

These values are then used in the following manner:

• Use ζ̃1 to obtain a “draw” of P(ζ2 < u2|ζ1 < ζ1),

P̃(ζ2 < u2|ζ1 < ζ1) = P(ζ2 < u2|ζ1 = ζ̃1)

= Φ
(
−
(
ν(j)2 + L12ζ̃1

)
/L22

)
• Use ζ̃1 and ζ̃2 to obtain a “draw” of P(ζ3 < u3|ζ1 < u1, ζ2 < u2),

P̃(ζ3 < u3|ζ1 < u1, ζ2 < u2) = P(ζ3 < u3|ζ1 = ζ̃1, ζ2 = ζ̃2)

= Φ
(
−
(
ν(j)3 + L13ζ̃1 + L23ζ̃2

)
/L33

)
• And so on.
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Therefore, a simulated probability for pj (denoted with a tilde) is obtained as

p̃j = Φ
(
−ν(j)1/L11

)m−1∏
j′=2

Φ
(
−
(
ν(j)j′ +

∑j′−1
k=1 Lkj′ ζ̃k

)
/Lj′j′

)
. (5.23)

By performing the above scheme T number of times to obtain T such simulated proba-
bilities {p(1)j , . . . , p

(T )
j }, the actual probability of interest pj is then approximated by the

sample mean of the draws,

p̂j =
1

T

T∑
t=1

p
(t)
j .

If it so happens that one of the standard normal cdfs in (5.23) is extremely small,
this can cause loss of significance due to floating-point errors (catastrophic cancellation).
It is better to work on a log-probability scale, so the products in (5.23) turn into sums,
and the result reverted back by exponentiating.

Remark 5.7. The GHK algorithm provides reasonably fast and accurate calculations
of class probabilities when Ψ is dense. As we alluded to earlier in the chapter, the
class probabilities condense to a unidimensional integral involving products of normal
cdfs (c.f Equation 5.7) if Ψ is diagonal. Note that if Ψ is in fact diagonal, then the
transformed Ω(j) = QΨ−1Q⊤ is most certainly not; the components of z are correlated
because they are all anchored on the same random variable. Thus, direct evaluation
of the unidimensional integral in (5.7) using quadrature methods as mentioned at the
bottom of page 154 avoids the Cholesky step and random sampling employed by the
GHK method.

5.6.2 Efficient Kronecker product inverse

As with the normal I-prior model, the time complexity of the variational inference algo-
rithm for I-probit models is dominated by the step involving the posterior evaluation of
the I-prior random effects w, which essentially is the inversion of an nm × nm matrix.
The matrix in question is

Vw =
(
Ψ⊗H2

η +Ψ−1 ⊗ In
)−1

. (from 5.17)

We can actually exploit the Kronekcer product structure to compute the inverse effi-
ciently. Perform an orthogonal eigendecomposition of Hη to obtain Hη = VUV⊤ and
of Ψ to obtain Ψ = QPQ⊤. This process takes O(n3 +m3) ≈ O(n3) time if m≪ n or
if done in parallel, and needs to be performed once per variational EM iteration. Then,
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manipulate V−1
w as follows:

V−1
w = (Ψ⊗H2

η) + (Ψ−1 ⊗ In)
= (QPQ⊤ ⊗VU2V⊤) + (QP−1Q⊤ ⊗VV⊤)

= (Q⊗V)(P⊗U2)(Q⊤ ⊗V⊤) + (Q⊗V)(P−1 ⊗ In)(Q⊤ ⊗V⊤)

= (Q⊗V)(P⊗U2 + P−1 ⊗ In)(Q⊤ ⊗V⊤)

Its inverse is

Vw = (Q⊤ ⊗V⊤)−1(P⊗U2 + P−1 ⊗ In)−1(Q⊗V)−1

= (Q⊗V)(P⊗U2 + P−1 ⊗ In)−1(Q⊤ ⊗V⊤)

which is easy to compute since the middle term is an inverse of diagonal matrices. This
brings time complexity of the variational EM algorithm down to a similar requirement
as if Ψ were diagonal. Unfortunately, storage requirements remain at O(n2m2) when
Ψ is dense, because the entire nm× nm matrix Vw is needed to evaluate the posterior
mean of vec w.

5.6.3 Estimation of Ψ in future work

Suppose that Ψ ∈ Rm×m is a free parameter to be estimated, bearing in mind that only
m(m−1)/2−1 variance components are identified in the I-probit model (see Section 5.2).
If so, the Q function from (5.12) conditional on the rest of the parameters can be written
as

Q(Ψ|α, η) = const.− 1

2
tr
(
Ψ

G1︷ ︸︸ ︷
E
[
(y∗ − µ)⊤(y∗ − µ)

]
+Ψ−1

G2︷ ︸︸ ︷
E(w⊤w)

)
with µ = 1nα

⊤+Hηw. This can be solved using numerical methods, though it must be
ensured that the identifiability constraints and positive-definiteness are satisfied. Specif-
ically in the case where Ψ is a diagonal matrix diag(ψ1, . . . , ψm), then

Q(Ψ|α, η) = const.− 1

2

m∑
j=1

ψj tr E
[
(y∗
·j − µ·j)(y∗

·j − µ·j)⊤
]

− 1

2

m∑
j=1

ψ−1
j tr E(w·jw⊤

·j)

is maximised, for j = 1, . . . ,m, at

ψ̂j =

(
E(w⊤·jw·j)

E
[
(y∗·j − µ·j)⊤(y∗·j − µ·j)

]) 1
2

,
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independently of the rest of the other ψk’s, k ̸= j. As per the derivations in Ap-
pendix H.1.2 (p. 307), the numerator of this expression is equal to tr(Ṽwj + w̃·jw̃⊤·j) =
tr(W̃jj). The denominator on the other hand is

E(y∗⊤
·j y∗
·j)− nα

2
j − tr(H2

ηW̃jj)− 2y∗⊤
·j Hηw̃·j − 2αj

n∑
i=1

n∑
i′=1

(y∗ij − hη(xi, xi′)w̃ij).

In either the full or I-probit model, solving Ψ involves the second moments of a
truncated normal distribution. In the case where Ψ is dense, this is obtained by Monte
Carlo methods, where samples from a truncated multivariate normal distribution are
obtained using Gibbs sampling. Although this strategy can be used when Ψ is diagonal,
we show that the form for the second moments involve integration of standard normal
cdfs and pdfs (Lemma C.5, p. 283), much like the formula for the first moments.

5.7 Examples

We present analyses of real-data examples using the I-probit model for a variety of appli-
caitons, namely binary and multiclass classification, meta-analysis, and spatio-temporal
modelling of point processes. Examples in this section have been analysed using in R
using the in-development iprobit package written by us. Code for replication is pro-
vided at http://myphdcode.haziqj.ml. All of these examples had assumed a fixed
error precision Ψ = Im.

5.7.1 Predicting cardiac arrhythmia

Statistical learning tools are being used in the field of medicine as a means to aid medical
diagnosis of diseases. In this example, factors determining the presence or absence of
heart diseses are studied. Traditionally, cardiologists inspect patients’ cardiac activity
(ECG data) in order to reach a diagnosis, which remains the “gold standard” method
of obtaining diagnoses. The study by Guvenir et al. (1997) aimed to predict cardiac
abnormalities by way of machine learning, and minimise the difference between the gold
standard and computer-based classifications.

The data set3 at hand contains a myriad of ECG readings and other patient at-
tributes such as age, height, and weight. Altogether, there are n = 451 observations
and p = 279 predictors. In order for a valid comparison to be made to other studies,
we excluded nominal covariates, leaving us with p = 194 continuous predictors, which
we then standardised. In the original data set, there are 13 distinct classes of cardiac

3Data is made publicly available at https://archive.ics.uci.edu/ml/datasets/arrhythmia.
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arrhythmia—again, following the lead of other studies, we had combined all forms of car-
diac diseases to form a single class, thus reducing the problem to a binary classification
task (normal vs. arrhythmia).

Following (5.6), the relationship between patient i’s probability of having a form of
cardiac arrhthmia pi and the predictors xi ∈ X ≡ R194 is modelled as

Φ(pi) = α+ f(xi).

Further, assuming f ∈ F a suitable RKHS with kernel hλ, we may assign an I-prior on the
(latent) regression function f . We consider three RKHSs: the canonical (linear) RKHS,
the fBm-0.5 RKHS and the SE RKHS. The first of these three assumes an underlying
linear relationship of the covariates and the probabilities, while the other two assumes
a smooth relationship. As all covariates had been standardised, it is sufficient to assign
a single scale parameter λ for the I-probit model.

For reference, fitting an I-probit model on the full data set takes about 4 seconds only,
with convergence reached in at most 15 iterations. Figure 5.5 plots the variational lower
bound value over time and iterations for the cardiac arrhythmia data set. As expected,
the lower bound value increases over time until a convergence criterion is reached.

To measure predictive ability, we fit the I-probit models on a random subset of the
data and obtain the out-of-sample test error rates from the remaining held-out observa-
tions. We then compare the results against popular machine learning classifiers, namely:
1) linear and quadratic discriminant analysis (LDA/QDA); 2) k-nearest neighbours; 3)
support vector machines (SVM) (Steinwart and Christmann, 2008); 4) Gaussian process
classification (Rasmussen and Williams, 2006); 5) random forests (Breiman, 2001); 6)
nearest shrunken centroids (NSC) (Tibshirani et al., 2002); and 7) L-1 penalised logistic
regression (Friedman et al., 2001). The experiment is set up as follows:

1. Form a training set by sub-sampling s ∈ {50, 100, 200} observations.

2. The remaining unsampled data is used as the test set.

3. Fit model on training set, and obtain test error rates defined as

test error rate =
1

s

n∑
i=1

[ypred
i ̸= ytest

i ]× 100%.

4. Repeat steps 1-3 100 times to obtain the average test error rates and standard
errors.
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Figure 5.5: Plot of variational lower bound over time (top), and plot of training error
rate and Brier scores over time (bottom).

Results for the methods listed above were extracted from the in-depth study by Cannings
and Samworth (2017), who also conducted identical experiments using their random
projection (RP) ensemble classification method. These are all tabulated in Table 5.3.

Of the three I-probit models, the fBm model performed the best. That it performed
better than the canonical linear I-probit model is unsurprising, since an underlying
smooth function to model the latent variables is expected to generalise better than a
rigid straight line function. The poor performance of the SE I-probit model may be
due to the fact that the lengthscale parameter was not estimated (fixed at l = 1), but
then again, we noticed reliable performance of the fBm even with fixed Hurst index
(γ = 0.5). It can be seen that the fBm I-probit model also outperform the more popular
machine learning algorithms out there including k-nearest neighbours, support vector
machines and Gaussian process classification. It came second only to random forests,
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Table 5.3: Mean out-of-sample misclassification rates and standard errors in parantheses
for 100 runs of various training (s) and test (451 − s) sizes for the cardiac arrhythmia
binary classification task.

Misclassification rate (%)
Method s = 50 s = 100 s = 200

I-probit
Linear 35.52 (0.44) 31.35 (0.33) 29.45 (0.38)
Smooth (fBm-0.5) 33.64 (0.66) 28.12 (0.34) 24.33 (0.24)
Smooth (SE-1.0) 48.26 (0.40) 48.32 (0.43) 47.11 (0.37)

Others
RP-LDA 33.24 (0.42) 30.19 (0.35) 27.49 (0.30)
RP-QDA 30.47 (0.33) 28.28 (0.26) 26.31 (0.28)
RP-k-NN 33.49 (0.40) 30.18 (0.33) 27.09 (0.31)
Random forests 31.65 (0.39) 26.72 (0.29) 22.40 (0.31)
SVM (linear) 36.16 (0.47) 35.61 (0.39) 35.20 (0.35)
SVM (Gaussian) 48.39 (0.49) 47.24 (0.46) 46.85 (0.43)
GP (Gaussian) 37.28 (0.42) 33.80 (0.40) 29.31 (0.35)
NSC 34.98 (0.46) 33.00 (0.40) 31.08 (0.41)
L-1 logistic 34.92 (0.42) 30.48 (0.34) 26.12 (0.27)

an ensemble learning method, which is also generally faster to train than Gaussian
process-like regressions including I-prior models. The time complexity of a random
forest algorithm is O(pqn log(n)) (Louppe, 2014), where p is the number of variables
used for training, q is the number of random decision trees, and n is the sample size.

5.7.2 Meta-analysis of smoking cessation

Conider the smoking cessation data set, as described in Skrondal and Rabe-Hesketh
(2004). It contains observations from 27 separate smoking cessation studies in which
participants are subjected to either a nicotine gum treatment or a placebo. The interest
is to estimate the treatment effect size, and whether it is statistically significant, i.e.
whether or not nicotine gum is an effective treatment for quitting smoking. The studies
are conducted at different times and due to various reasons such as funding and cultural
effects, the results from all of the studies may not be in agreement. The number of
effective participants plays a major role in determining the power of the statistical tests
performed in individual studies. The question then becomes how do we meaningfully
aggregate all the data to come up with one summary measure?

Several methods exist to analyse such data sets. One may consider a fixed-effects
model, similar to a classical one-way ANOVA model to establish whether or not the

5.7 Examples 181



effect size is significant. Because of the study-specific characteristics, it is natural to
consider multilevel or random-effects models as a means to estimate the effect size.
Regardless of method, the approach of analysing study-level treatment effects instead of
patient-level data only is the paradigm for meta-analysis, and our I-prior model takes
this approach as well.

Control Treatment

Remain Quit Remain Quit

1

2
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10

25

50

100

500

C
ou

nt

Figure 5.6: Comparative box-plots of the distribution of patients who successfully quit
smoking and those who remained smokers, in the two treatment groups. It is evident
that there are more successful patients quitting smoking in the treatment group than in
the control group. The raw odds ratio of quitting smoking (treatment vs. control) is
1.66.

A summary of the data is displayed by the box-plot in Figure 5.6. On the whole, there
are a total of 5,908 patients, and they are distributed roughly equally among the control
and treatment groups (46.3% and 53.7% respectively, on average). From the box-plots,
it is evident that there are more patients who quit smoking in the treatment group as
compared to the placebo control group. There are various measures of treatment effect
size, such as risk ratio or risk differences, but we shall concentrate on odds ratios as
defined by

odds ratio =
odds of quitting smoking in treatment group

odds of quitting smoking in control group .

The odds of quitting smoking in either group is defined as

odds = P(quit smoking)
1− P(quit smoking) ,
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and these probabilities, odds and ultimately odds ratio can be estimated from sample
proportions. This raw odds ratio for all study groups is calculated as 1.66 = e0.50. It is
also common for the odds ratio to be reported on the log scale (usually as a remnant
of logistic models). A value greater than one for the odds ratio (or equivalently, greater
than zero for the log odds ratio) indicates a significant treatment effect.

A random-effects analysis using a multilevel logistic model has been considered by
Agresti and Hartzel (2000). Let i = 1, . . . , nk index the patients in study group k ∈
{1, . . . , 27}. For patient i in study j, pik denotes the probability that the patient has
successfully quit smoking. Additionally, xik is the centred dummy variable indicating
patient i’s treatment group in study k. These take on two values: 0.5 for treated patients
and -0.5 for control patients. The logistic random-effects model is

log
(

pij
1− pij

)
= β0j + β1jxij

with (
β0j

β1j

)
∼ N

((
β0

β1

)
,

(
σ20 σ01

σ01 σ21

))

Agresti and Hartzel (2000) also made the additional assumption σ01 = 0, so that, coupled
with the contrast coding used for xik, the total variance Var(β0k + β1jxik) would be
constant in both treatment groups. The overall log odds ratio is represented by β1, and
this is estimated as 0.57 ≈ log 1.76.

In an I-prior model, the Bernoulli probabilities pik are regressed against the treatment
group indicators xik and also the patients’ study group k via the regression function f

and a probit link:

Φ−1(pik) = f(xik, k)

= f1(xik) + f2(k) + f12(xik, j).

We have decomposed our function f into three parts: f1 represents the treatment effect,
f2 represents the effect of the study groups, and f12 represents the interaction effect
between the treatment and study group on the modelled probabilities. As both xik

and k are nominal variables, the functions f1 and f2 both lie in the Pearson RKHS of
functions F1 and F2, each with RKHS scale parameters λ1 and λ2. As such, it does
not matter how the xik variables are coded (dummy coding 0, 1 vs. centred coding -0.5,
0.5) as the scaling of the function is determined by the RKHS scale parameters. The
interaction effect f12 lies in the RKHS tensor product F1 ⊗ F2. In the I-probit model,
there are only two parameters to estimate, while in the standard logistic random-effects
model, there are six. The results of the I-prior fit are summarised in the table below.
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Table 5.4: Results of the I-probit model fit for three models.

Model ELBO Error rate (%) Brier score No. of
parameters

f1 -3210.76 23.65 0.179 1
f1 + f2 -3142.24 29.30 0.206 2
f1 + f2 + f12 -3091.20 23.48 0.168 2

The approximated marginal log-likelihood value for the I-prior model (i.e. variational
lower bound), the Brier score for each model and the number of RKHS scale parameters
estimated in the model are reported in Table 5.4. Three models were fitted: 1) a
model with only the treatment effect; 2) a model with a treatment effect and a study
group effect; and 3) Model 2 with the additional assumption that treatment effect varies
across study groups. Model 1 disregards the study group effects, while Model 2 assumes
that the effectiveness of the nicotine gum treatment does not vary across study groups
(akin to a varying-intercept model). A model comparison using the evidence lower
bound indicates that Model 3 has the highest value, and the difference is significant
from a Bayes factor standpoint—BF(M3,M1) and BF(M3,M2) are both greater than
150. The misclassification rate and Brier score indicates good predictive performance of
the models, and there is not much to distinguish between the three although Model 3 is
the best out of the three models.

Unlike in the logistic random-effects model, where the log odds ratio can be read off
directly from the coefficients, with an I-prior probit model the log odds ratio needs to
be calculated manually from the fitted probabilities. The probabilities of interest are
the probabilities of quitting smoking under each treatment group for each study group
k—call these pk(treatment) and pk(control). That is,

pk(treatment) = Φ
(
ν̂(treatment, k)

)
pk(control) = Φ

(
ν̂(control, k)

)
,

where ν̂ represents the standardised posterior mean estimate for the regression functions
which are distributed according to

f(xik, k)|y, θ̂ ∼ N
(
µ̂(xik, k), σ̂

2(xij , k)
)
,

with xik ∈ {treatment, control} and k ∈ {1, . . . , 27} (see details in Section 5.5). The
log odds ratio for each study group can then be calculated as usual. For the overall
log odds ratio, the probabilities that are used are the averaged probabilities weighted
according to the sample sizes in each group. This has been calculated as 0.51 ≈ log 1.66,
slightly lower than both the raw log odds ratio and the log odds ratio estimated by the
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Figure 5.7: Forest plot of effect sizes (log odds ratios) in each group as well as the overall
effect size together with their 95% confidence bands. The plot compares the raw log odds
ratios, the logistic random-effect estimates, and the I-prior estimates. Sizes of the points
indicate the relative sample sizes per study group.
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logistic random-effects model. This can perhaps be attributed to some shrinkage of the
estimated probabilities due to placing a prior with zero mean on the regression functions.

The credibility intervals for the log odds ratios in the forest plot of Figure 5.7 are
also noticeably narrower under an I-prior compared to the fitted multilevel model. One
explanation is that empirical Bayes estimates, such as the I-probit estimates under a
variational EM framework, tend to underestimate the variability in the estimates because
the variability in the parameters are ignored when point estimates are used, compared
to distributions in a true Bayesian estimation framework.

5.7.3 Multiclass classification: Vowel recognition data set

We illustrate multiclass classification using I-priors on a speech recognition data set4 with
m = 11 classes to be predicted from digitized low pass filtered signals generated from
voice recordings. Each class corresponds to a vowel sound made when pronouncing
a specific word. The words that make up the vowel sounds are shown in Table 5.5.
Each word was uttered once by multiple speakers, and the data are split into a training
and a test set. Four males and four female speakers contributed to the training set,
while four male and three female speakers contributed to the test set. The recordings
were manipulated using speech processing techniques, such that each speaker yielded
six frames of speech from the eleven vowels, each with a corresponding 10-dimensional
numerical input vector (the predictors). This means that the size of the training set is
8×6×11 = 528, while 7×6×11 = 462 data points are available for testing the predictive
performance of the models. This data set is also known as Deterding’s vowel recognition
data (after the original collector, Deterding, 1990). Machine learning methods such as
neural networks and nearest neighbour methods were analysed by Robinson (1989).

Table 5.5: The eleven words that make up the classes of vowels.

Class Label Vowel Word Class Label Vowel Word
1 hid iː heed 7 hOd ɒ hod
2 hId ɪ hid 8 hod ɔː hoard
3 hEd ɛ head 9 hUd ʊ hood
4 hAd a had 10 hud uː who’d
5 hYd ʌ hud 11 hed əː heard
6 had ɑː hard

We will fit the data using an I-probit model with the canonical linear kernel, fBm-0.5
kernel, and the SE kernel with lengthscale l = 1. Each model took roughly 13 seconds
per iteration in fitting the training data set (n = 528). In particular, the canonical kernel

4Data is publicaly available from the UCI Machine Learning Repository, URL: https://archive.
ics.uci.edu/ml/datasets/Connectionist+Bench+(Vowel+Recognition+-+Deterding+Data).
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model took a long time to converge, with each variational inference iteration improving
the lower bound only slighly each time. In contrast, both the fBm-0.5 and SE model
were quicker to converge. Multiple restarts from different random seeds were conducted,
and we found that they all converged to a similar lower bound value. This alleviates any
concerns that the model might have converged to different multiple local optima.
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(b) fBm-0.5 kernel
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Figure 5.8: Confusion matrices for the vowel classification problem in which predicted
values were obtained from the I-probit models. The maximum value for any cell is 42
(seven speakers delivered six frames of speech per vowel). Blank cells indicate nil values.

A good way to visualise the performance of model predictions is through a confusion
matrix, as shown in Figure 5.8. The numbers in each row indicate the instances of a
predicted class, while the numbers in the column indicate instances of the actual classes,
while nil values are indicated by blank cells.
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Table 5.6: Results of various classification methods for the vowel data set.

Error rate (%)
Model Train Test
I-probit

Linear 29 54
Smooth (fBm-0.5) 22 40
Smooth (SE-1.0) 7 34

Others
Linear regression 48 67
Logistic regression 22 51
Linear discriminant analysis 32 56
Quadratic discriminant analysis 1 53
Decision trees 5 54
Neural networks 45
k-nearest neighbours 44
FDA/BRUTO 6 44
FDA/MARS 13 39
GPC (SE) 4 42

Comparisons to other methods that had been used to analyse this data set is given in
Table 5.6. In particular, the I-probit model is compared against 1) linear regression; 2)
logistic linear regression; 3) linear and quadratic discriminant analysis; 4) decision trees;
5) neural networks; 6) k-nearest neighbours; and 7) flexible discriminant analysis. All
of these methods are described in further detail in Friedman et al. (2001, Chs. 4 & 12,
Table 12.3). Additionally, Gaussian process classification (SE kernel) using the kernlab
package (Karatzoglou et al., 2004) in R was used. The I-probit model using the fBm-0.5
and SE kernel offers two of the best out-of-sample classification error rates (40% and
34% respectively) of all the methods compared. The linear I-probit model is seen to be
comparable to logistic regression, linear and quadratic discrimant analysis, and decision
trees, yet provides a significant improvement over multiple linear regression.

5.7.4 Spatio-temporal modelling of bovine tuberculosis in Cornwall

Data containing the number of breakdows of bovine tubercolosis (BTB) in Cornwall,
the locations of the infected animals, and the year of occurence is analysed. The inter-
est, as motivated by veterinary epidimiology, is to understand whether or not there is
spatial segregation of the infection of the herds, and whether there is a time-element
to the presence or absence of this spatial segregation. There has been previous work
done to analyse this data set. Diggle et al. (2005) developed a non-parametric method
to estimate spatial segregation using a multivariate point process. The occurrences are
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modelled as Poisson point processes, and spatial segregation is said to have occured if
the model-estimated type-specific breakdown probabilities at any given location are not
significantly different from the sample proportions. The authors estimated the prob-
abilities via kernel regression, and the test statistic of interest had to be estimated
via Monte Carlo methods. Other works include Diggle et al. (2013), who used a fully
Bayesian approach for spatio-temporal multivariate log-Gaussian Cox processes, which
is implemented in the R package lgcp (Taylor et al., 2013).
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Figure 5.9: Distribution of the different types (Spoligotypes) of bovine tubercolosis
affecting herds in Cornwall over the period 1989 to 2002.

The data set contains n = 919 recorded cases over a span of 14 years. For each of
the cases, spatial data pertaining to the location of the farm (Northings and Eastings,
measured in kilometres) are available. Originally, 11 unique spoligotypes were recorded
in the data, with the four most common spoligotypes being Sp9 (m = 1), Sp12 (m = 2),
Sp15 (m = 3) and Sp20 (m = 4), as shown by the histogram in Figure 5.9. We had
grouped the remaining seven spoligotypes into an ‘Others’ category (m = 5), so that the
problem becomes a multinomial regression with five distinct outcomes.

We are able to investigate any spatio-temporal patterns of infection using I-priors
rather simply. Let pij denote the probability that a particular farm i is infected with a
BTB disease with spoligotype j ∈ {1, . . . , 5}. We model the transformed probabilities
gj(pij) as following a function which takes two covariates, i.e. the spatial data x1 ∈ R2,
and the temporal data x2 (year of infection):

pij = g−1
j

(
fk(x1, x2)

)m
k=1

= g−1
j

(
f1k(x1) + f2k(x2) + f12k(x1, x2)

)m
k=1

,
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Figure 5.10: Spatial distribution of all cases over the 14 years.

where the function g−1
j : Rm → [0, 1] is the same squashing function used in equation

(5.10). We assume a smooth effect of space and time on the probabilities, and appropriate
RKHSs for the functions f1 ∈ F1 and f2 ∈ F2 are the fBm-0.5 RKHS. Alternatively,
as per Diggle et al. (2005), divide the data into four distinct time periods: 1) 1996 and
earlier; 2) 1997 to 1998; 3) 1999 to 2000; and finally 4) 2001 to 2002. In this case, x2
would indicate which period the infection took place in, and thus would have a nominal
effect on the probabilities. An appropriate RKHS for f2 in such a case would be the
Pearson RKHS. In either case, the function f12 ∈ F1 ⊗ F2 would be the “interaction
effect”, meaning that with such an effect present, the spatial distribution of the diseases
are assumed to vary across the years.

We fitted four different models:

• M0: Intercept only.
pij = g−1

j

(
αk

)m
k=1
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• M1: Spatial segregation.

pij = g−1
j

(
αk + f1k(xi)

)m
k=1

f1k ∈ F1 Pearson RKHS.

• M2: Spatio-temporal.

pij = g−1
j

(
αk + f1k(xi) + f2k(ti) + f12k(xi, ti)

)m
k=1

f1k ∈ F1 Pearson RKHS, f2k ∈ F2 fBm-0.5 RKHS, and f12k ∈ F1 ⊗F2

• M3: Spatio-period.

pij = g−1
j

(
αk + f1k(xi) + f2k(ti) + f12k(xi, ti)

)m
k=1

f1k ∈ F1 Pearson RKHS, f2k ∈ F2 Pearson RKHS, and f12k ∈ F1 ⊗F2

Model M0 corresponds to a model which ignores any spatial or temporal effects (the
baseline intercept only model). Model M1 takes into account only spatial effects. Both
models M2 and M3 account for spatio-temporal effects, but M2 assumes a smooth effect
of time, while M3 segregates the points into four distinct time periods for analysis. Model
comparison is easily done, and Table 5.7 indicates that model M2 has the highest ELBO
of the four models, making it the preferable model.

For a more visual approach, we can look at the plots of the surface probabilities.
To obtain these probabilities, we first determined the spatial points (Northings and
Eastings) which fall inside the polygon which makes up Cornwall. We then obtained
predicted probabilities for each class of disease at each location. Figure 5.11 was obtained
using the model with spatial covariates only, thus ignoring any temporal effects. In the
case of the spatio-temporal model, we used the model which had the period formulation
for time (model M3). This way, we can display the surface probabilities of the time
periods in four plots only, which is more economical to exhibit within the margins of
this thesis. Note that there is no issue with using the continuous time model—we have
produced an animated gif image at http://phd.haziqj.ml/examples/, showing the
yearly evolution of the surface probabilities between 1989 and 2002.

As the plots suggests, there is indeed spatial segregation for the four most common
spoligotypes, and this is also very prominently seen from Figure 5.11. In comparing the
distribution of the spoligotypes over the years, we may refer to Figure 5.12, a series of
predicted probability surface plots over the four time periods obtained from model M3.
For each time period, we also superimposed the actual observations onto the predicted
surface probabilities. In addition, coloured dotted lines are displayed to indicate the
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Figure 5.11: Predicted probability surfaces for BTB contraction in Cornwall for the four
largest spoligotypes of the bacterium Mycobacterium bovis over the entire time period
using model M1.
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Figure 5.12: Predicted probability surfaces for BTB contraction in Cornwall for the
four largest spoligotypes of the bacterium Mycobacterium bovis over four different time
periods using model M3.
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“decision boundaries” for each of the four spoligotypes. The most evident change is
seen to the spatial distribution of spoligotype 12, with the decision boundary giving
it a large area in years 1996 and earlier, but this steadily shrunk over the years. The
occurrences of spoligotype 9 in the south-west, which is most commonly seen in the east
of Cornwall, is not deemed to be significant by the model. The other two spoligotypes
are also relatively unchanged across the years.

5.8 Conclusion

This work presents an extension of the normal I-prior methodology to fit categorical
response models using probit link functions—a methodology we call the I-probit. The
main motivation behind this work is to overcome the drawbacks of modelling proba-
bilities using the normal I-prior model. We assumed continuous latent variables that
represent “class propensities” exist, which we modelled using normal I-priors, and trans-
formed them into probabilities using a probit link function. In this way, the advantages
of the original I-prior methodology are preserved for categorical response models as well.

The core of this work explores ways in which to overcome the intractable integral pre-
sented by the I-probit model in (5.8). Techniques such as quadrature methods, Laplace
approximation and MCMC tend to fail, or are unsatisfactorily slow to accomplish. The
main reason for this is the dimension of this integral, which is nm, and thus for large
sample sizes and/or number of classes, is unfeasible with such methods. We turned to
variational inference in the face of an intractable posterior density that hampers an EM
algorithm, and the result is a sequential updating scheme, similar in time and storage
requirements to the EM algorithm.

In terms of similarity to other works, the generalised additive models (GAMs) of
Hastie and Tibshirani (1986) comes close. The setup of GAMs is near identical to the
I-probit model, although estimation is done differently. GAMs do not assume smooth
functions from any RKHS, but instead estimates the f ’s using a local scoring method
or a local likelihood method. Kernel methods for classification are extremely popu-
lar in computer science and machine learning; examples include support vector ma-
chines (Schölkopf and Smola, 2002) and Gaussian process classification (Rasmussen and
Williams, 2006), with the latter being more closely related to the I-probit method. How-
ever, Gaussian process classification typically uses the logistic sigmoid function, and
estimation most commonly performed using Laplace approximation, but other meth-
ods such as expectation propagation (Minka, 2001) and MCMC (Neal, 1999) have been
explored as well. Variational inference for Gaussian process probit models have been
studied by Girolami and Rogers (2006), with their work providing a close reference to
the variational algorithm employed by us.
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Suggestions for future work include:

1. Estimation of Ψ. A limitation we had to face in this work was to treat Ψ as fixed.
The discussion in Section 5.6.3 shows that estimation of Ψ is possible, however,
the specific nature of implementing this in computer code could not be explored
in time. In particular, for the full I-probit model, the best method of imposing
positive-definite constraints for Ψ in the M-step has not been fully researched.

2. Inclusion of class-specific covariates. Throughout the chapter, we assumed
that covariates were unit-specific, rather than class-specific. To illustrate, consider
modelling the choice of travel mode between two destinations (car, coach, train
or aeroplane) as a function of disposable income and travel time. Individuals’
income as a predictor of transportation choice is unit-specific, but clearly, travel
time depends on the mode of transport. To incorporate class-specific covariates
zij , the regression on the latent propensities in (5.2) could be extended as such:

y∗ij =

f(xi,zij ,j)︷ ︸︸ ︷
αj + fj(xi) + e(zij) + ϵij

An I-prior would then be applied as usual, with careful consideration of the RKKS
used to model f .

3. Improving computational efficiency. The O(n3m) time requirement for esti-
mating I-probit models hinder its use towards large-data applications. In a limited
study, we did not obtain reliable improvements using low-rank approximations of
the kernel matrix such as the Nyström method. The key to improving compu-
tational efficiency could lie in sparse variational methods, a suggestion that was
made to improve normal I-prior models as well.
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Figure 5.13: Time taken to complete a single variational inference iteration for varying
sample sizes and number of classes m. The solid line represents actual timings, while
the dotted lines are linear extrapolations.
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As a final remark, we note that variational Bayes, which entails a fully Bayesian
treatment of the model (setting priors on model parameters θ), is a viable alternative to
variational EM. The output of such a variational inference algorithm would be approxi-
mate posterior densities for θ, in addition to q(y∗) and q(w), instead of point estimates
for θ. Posterior inferences surrounding the parameters would then be possible, such as
obtaining posterior standard deviations, credibility intervals, and so on. However, a
variational Bayes route has its cons:

1. Tedious derivations. As the parameters now have a distribution θ = {α, η,Ψ} ∼
q(α, η,Ψ), quantities such as

• E(log |Ψ|);

• E(H2
η); and

• tr E
[
(y∗ − 1nα

⊤ −Hηw)Ψ(y∗ − 1nα
⊤ −Hηw)⊤

]
,

among others, will need to be derived for the variational inference algorithm, and
these can be tricky to compute.

2. Suited only to conjugate exponential family models. When conjugate expo-
nential family models are considered, the approximate variational densities (under
a mean-field assumption) are easily recognised, as they themselves belong to the
same exponential family as the model or prior. However, I-prior does not always
admit conjugacy for the kernel parameters η (only for ANOVA RKKSs scale pa-
rameters), and most certainly not for Ψ (at least not in the current parameterisa-
tion). When this happens, techniques such as importance sampling or Metropolis
algorithms need to be employed to obtain the posterior means required for the
variational algorithm to proceed.

3. Prior specification and sensitivity. It is not clear how best to specify prior
information (from a subjectivist’s standpoint) for the RKHS scale parameters,
intercepts, and perhaps the error precision, because these are parameters relating
to the latent propensities which are not very meaningful or interpretable. Of
course, one could easily specify vague or even diffuse priors. The concern is that
the model could be sensitive to prior choices.

In consideration of the above, we opted to employ a variational EM algorithm for
estimation of I-probit models, instead of a full variational Bayes estimation. In any case,
computational complexity is expected to be the same between the two methods. An
interesting point to note is that the RKHS scale parameters and intercept would admit
a normal posterior under a variational Bayes scheme. This means that the posterior mode
and the posterior mean coincide, so point estimates under a variational EM algorithm are
exactly the same as the posterior mean estimates under a variational Bayes framework
when a diffuse prior is used.
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