
Chapter 1

Introduction

Regression analysis is undoubtedly one of the most important tools available at a prac-
titioner’s disposal to understand the relationship between one or more explanatory vari-
ables x, and the independent variable of interest, y. This relationship is usually expressed
as y ≈ f(x|θ), where f is called the regression function, and this is dependent on one
or more parameters denoted by θ. Regression analysis concerns the estimation of said
regression function, and once a suitable estimate f̂ has been found, post-estimation
procedures such as prediction and inference surrounding f or θ, may be performed.

Estimation of the regression function may be done in many ways. This thesis concerns
the use of I-priors (Bergsma, 2018), in a semi-Bayesian manner, for regression modelling.
The I-prior is an objective, data-dependent prior for the regression function which makes
use of its Fisher information and is based on the principle of maximum entropy (Jaynes,
1957a, 1957b, 2003). Entropy-maximising priors are “uninformative” in the sense that
it minimises the amount of prior information encoded into prior distributions, and thus
should be advocated in the absence of any prior knowledge.

The essence of regression modelling using I-priors is introduced briefly in this chapter,
but as the development of I-priors is fairly recent, we dedicate two full chapters (Chap-
ters 2 and 3) to describe the concept fully, including a fairly comprehensive review of
functional analysis (Sections 2.1 to 2.3) germane to our discussions. These two chapters
constitutes the theoretical basis for the I-prior methodology.

Subsequently, this thesis has three main chapters which we hope to present as method-
ological innovations surrounding the use of I-priors for modelling. Chapter 4 describes
the I-prior modelling framework and computational methods relating to the estimation
of I-prior models. Chapter 5 extends the I-prior methodology to fit categorical outcome
models. Chapter 6 discusses the use of I-priors in variable selection for linear models.
In addition to introducing the statistical model of interest and motivating the use of
I-priors, this introductory chapter ultimately provides a summary outline of the thesis.
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1.1 Regression models

For subject i ∈ {1, . . . , n}, assume a real-valued response yi has been observed, as well
as a row vector of p covariates xi = (xi1, . . . , xip), where each xik belongs to some set
Xk, for k = 1, . . . , p. Let S = {(y1, x1), . . . , (yn, xn)} denote this observed sample of size
n. Consider then the following regression model, which stipulates the dependence of the
yi’s on the xi’s:

yi = α+ f(xi) + ϵi. (1.1)

Here, f is a regression function to be estimated, and α is an intercept. Additionally, it
is assumed that the errors ϵi are zero-meaned and normally distributed according to

(ϵ1, . . . , ϵn)
⊤ ∼ Nn(0,Ψ−1), (1.2)

where Ψ = (ψij)
n
i,j=1 is the precision matrix. We shall often refer to model (1.1) subject

to (1.2) as the normal regression model. The choice of multivariate normal errors is
not only a convenient one (as far as distributional assumptions go), but one that is also
motivated by the principle of maximum entropy (Jaynes, 1957a, 1957b, 2003).

Interestingly, a wide variety of statistical models can be captured by the seemingly
humble normal regression model, simply by varying the form of the regression function
f . For instance, when f can be parameterised linearly as f(xi) = x⊤i β, β ∈ Rp, we then
have the ordinary linear regression—a staple problem in statistics and other quantitative
fields.

We might also have data that is separated naturally into groups or levels by design,
for example, data from stratified sampling, students within schools, or longitudinal mea-
surements over time. In such cases, we might want to consider a regression function with
additive components

f(x
(j)
i , j) = f1(x

(j)
i ) + f2(j) + f12(x

(j)
i , j)

where x(j)i denotes the p-dimensional i’th observation for group j ∈ {1, . . . ,m}. Again,
assuming a linear parameterisation, this is recognisable as the standard multilevel or
random-effects linear model (Rabe-Hesketh and Skrondal, 2012), with f2 representing
the varying intercept via f2(j) = αj , f12 representing the varying slopes via f12(x(j)i , j) =

x
(j)⊤
i uj , uj ∈ Rp, and f1 representing the fixed-effects linear component x(j)⊤i β as in the

linear model above.

Moving on from linear models, smoothing models may be of interest as well. A myriad
of models exist for this type of problem, with most classed as nonparametric regression
(Wassermann, 2006), and the more popular ones include LOcal regrESSion (LOESS),
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kernel regression, and smoothing splines (Wahba, 1990). Semiparametric regression
models, on the other hand, combines the linear component of a regression model with a
nonparameteric component.

Further, the regression problem is made more intriguing when the set of covariates
X is functional—in which case the linear regression model aims to estimate coefficient
functions α, β : T → R from the model

yi =

∫
T

{
α(t) + xi(t)β(t)

}
dt+ ϵi.

Nonparametric and semiparametric regression with functional covariates have also been
widely explored (Ramsay and Silverman, 2005). Models of this nature still fall under the
remit of the normal regression model by selecting a regression functional with domain
over the functional covariates.

1.2 Vector space of functions

It would be beneficial to prescribe some sort of structure for which estimation of the
regression function can be carried out methodically and reliably. This needed structure
is given to us by assuming that our regression function f for the normal model lies
in some topological vector space, namely, a reproducing kernel Hilbert or Kreĭn space
(RKHS/RKKS) F equipped with the reproducing kernel h : X × X → R. Often, the
reproducing kernel (or simply kernel, for short) is shaped by one or more parameters
which we shall denote by η. Correspondingly, the kernel is rightfully denoted hη to
indicate the dependence of the parameters on the kernels, though where this is seemingly
obvious, might be omitted. For I-prior modelling, which is the focus of this thesis, we
make the assumption that our regression function lies in an RKKS F .

RKKSs, and more popularly RKHSs, provide a geometrical advantage to learning
algorithms: projections of the inputs to a richer and more informative (and usually
higher dimensional) feature space, where learning is more likely to be successful, need
not be figured out explicitly. Instead, feature maps are implicitly calculated by the use of
kernel functions. This is known as the “kernel trick” in the machine learning literature
(Hofmann et al., 2008), and it has facilitated the success of kernel methods for learning,
particularly in algorithms with inner products involving the transformed inputs.

Due to the one-to-one mapping between the set of kernel functions and the set of
RKHSs, choosing the space in which the regression function lies is equivalent to choosing
a particular kernel function, and this is chosen according to the desired effects of the
covariates on the regression function. RKKSs on the other hand also possess unique
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kernels, but every (generalised) kernel1 is associated to at least one RKKS. An in-depth
discussion (including the motivation for their use) on kernels, RKHSs and RKKSs will
be provided later in Chapter 2, but for now, it suffices to say that kernels which invoke
either a linear, smooth or categorical dependence, or any combinations thereof, are of
interest. This would allow us to fit the various models described earlier within this
RKHS/RKKS framework.

1.3 Estimating the regression function

Having decided on a vector space F , we now turn to the task of choosing the best f ∈ F
that fits the data sample S. ‘Best’ here could mean a great deal of things, such as
choosing f which minimises an empirical risk measure2 defined by

R̂(f) =
1

n

n∑
i=1

Λ
(
yi, f(xi)

)
for some loss function Λ : R2 → [0,∞). A common choice for the loss function is the
squared loss function

Λ
(
yi, f(xi)

)
=

n∑
j=1

ψij

(
yi − f(xi)

)(
yj − f(xj)

)
,

and when used, defines the (generalised) least squares regression. For the normal model,
the minimiser of the empirical risk measure under the squared loss function is also the
maximum likelihood (ML) estimate of f , since R̂(f) would be twice the negative log-
likelihood of f , up to a constant.

The ML estimator of f typically interpolates the data if the dimension of F is at
least n, so is of little use. The most common method to overcome this issue is Tikhonov
regularisation, whereby a regularisation term is added to the risk function, with the aim
of imposing a penalty on the complexity of f . In particular, smoothness assumptions on
f can be represented by using its RKHS norm ∥·∥F : F → R as the regularisation term3.
Therefore, the solution to the regularised least squares problem—call this freg—is the
minimiser of the mapping from F to R defined by

f 7→

data fit term︷ ︸︸ ︷
1

n

n∑
i=1

n∑
j=1

ψij

(
yi − f(xi)

)(
yj − f(xj)

)
+ λ−1

penalty term︷ ︸︸ ︷
∥f − f0∥2F , (1.3)

1By generalised kernels, we mean kernels that are not necessarily positive definite in nature.
2 More appropriately, the risk functional R(f) =

∫
Λ(y, f(x))dP(y, x), i.e. the expectation of the

loss function under some probability measure of the observed sample, should be used. Often the true
probability measure is not known, so the empirical risk measure is used instead.
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which also happens to be the penalised maximum likelihood solution. Here, f0 ∈ F can
be thought of a prior “best guess” for the function f . The λ−1 > 0 parameter—known
as the regularisation parameter—controls the trade-off between the data-fit term and
the penalty term in (1.3), and is not usually known a priori and must be estimated.

An attractive consequence of the representer theorem (Kimeldorf and Wahba, 1970)
for Tikhonov regularisation implies that freg admits the form

freg = f0 +
n∑

i=1

h(·, xi)wi, wi ∈ R, ∀i = 1, . . . , n, (1.4)

even if F is infinite dimensional. This simplifies the original minimisation problem from
a search for f over a possibly infinite-dimensional domain, to a search for the optimal
coefficients wi in n dimensions.

Tikhonov regularisation also has a well known Bayesian interpretation, whereby the
regularisation term encodes prior information about the function f . For the normal
regression model with f ∈ F , an RKHS, it can be shown that freg is the posterior
mean of f given a Gaussian process prior (Rasmussen and Williams, 2006) with mean
f0 and covariance kernel Cov

(
f(xi), f(xj)

)
= λh(xi, xj). The exact solution for the

coefficients w := (w1, . . . , wn)
⊤ are in fact w =

(
H + Ψ−1

)−1
(y − f0), where H =(

h(xi, xj)
)n
i,j=1

(often referred to as the Gram matrix or kernel matrix) and (y − f0) =
(y1 − f0(x1), . . . , yn − f0(xn))

⊤.

1.4 Regression using I-priors

Building upon the Bayesian interpretation of regularisation, Bergsma (2018) proposes an
original prior distribution for the regression function such that its realisations admit the
form for the solution given in the representer theorem. The I-prior for the regression
function f in (1.1) subject to (1.2) and f ∈ F , an RKKS with kernel hη, is defined
as the distribution of a random function of the form (1.4) when the wi are distributed
according to

(w1, . . . , wn)
⊤ ∼ Nn(0,Ψ),

where 0 is a length n vector of zeroes, and Ψ is the error precision matrix. As a result,
we may view the I-prior for f as having the Gaussian process distribution

f :=
(
f(x1), . . . , f(xn)

)⊤ ∼ Nn(f0,HηΨHη), (1.5)
3 Concrete notions of complexity penalties can be introduced if F is a normed space, though RKHSs

are typically used as it gives great conveniences.
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with Hη an n×n matrix with (i, j) entries equal to hη(xi, xj), and f0 a vector containing
the f0(xi)’s, i = 1, . . . , n. The covariance matrix of this multivariate normal prior is
related to the Fisher information for f , and hence the name I-prior—the ‘I’ stands
for information. Furthermore, the I-prior happens to be an entropy-maximising prior,
subject to certain constraints. Chapter 3 contains details of the derivation of I-priors for
the normal regression model.

As with Gaussian process regression (GPR), the function f is estimated by its poste-
rior mean. For the normal model, the posterior distribution for the regression function
conditional on the responses y = (y1, . . . , yn),

p(f|y) = p(y|f)p(f)∫
p(y|f)p(f)df , (1.6)

can easily be found, and it is in fact normally distributed. The posterior mean for f
evaluated at a point x ∈ X is given by

E
(
f(x)

∣∣y) = f0(x) + h⊤
η (x)

w̃︷ ︸︸ ︷
ΨHη

(
HηΨHη +Ψ−1

)−1
(y − f0) (1.7)

where we have defined hη(x) to be the vector of length n with entries hη(x, xi) for
i = 1, . . . , n. Incidentally, the elements of the n-vector w̃ defined in (1.7) are the pos-
terior means of the random variables wi in the formulation (1.4). The point-evaluation
posterior variance for f is given by

Var
(
f(x)

∣∣y) = h⊤
η (x)

(
HηΨHη +Ψ−1

)−1hη(x). (1.8)

Prediction for a new data point xnew ∈ X then concerns obtaining the posterior predictive
distribution

p(ynew|y) =
∫
p(ynew|fnew,y)p(fnew|y)dfnew,

where we had defined fnew := f(xnew). This is again a normal distribution in the case
of the normal model, with similar mean and variance as in (1.7). For a derivation, see
Section 4.2 (p. 109) in Chapter 4 for details.

There is also the matter of optimising model parameters θ, which in our case, collec-
tively refers to the kernel parameters η and the precision matrix of the errors Ψ. Model
parameters θ may be estimated in several ways, either by likelihood-based methods or
fully Bayesian methods. The former includes methods such as direct maximisation of
the (marginal) likelihood, L(θ) =

∫
p(y|θ, f)p(f)df, and the expectation-maximisation

(EM) algorithm. Both are seen as a form of empirical Bayes estimation, or a type-II ML
estimation (Bishop, 2006), as it is known in machine learning. In a fully Bayesian setting
on the other hand, Markov chain Monte Carlo (MCMC) may be employed, assuming
prior distributions on the model parameters.
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1.5 Advantages and limitations of I-priors

The I-prior methodology has the following advantages:

1. A unifying methodology for various regression models.

The I-prior methodology has the ability to fit a multitude of regression models
simply by choosing the RKKS to which the regression function belongs. As such,
it can be seen as a unifying methodology for various parametric and nonparametric
regression models including additive models, multilevel models and models with
one or more functional covariates.

2. Simple estimation procedure.

Estimation of model parameters using the aforementioned methods are very simple
to implement, barring any computational and numerical hurdles, which shall be
discussed in Chapter 4.

3. Parsimonious specification.

I-prior models are most typically specified using only RKHS scale parameters and
the error precision. This encourages parsimony in model building; for example,
smoothing models can be fitted using only two parameters, while linear multilevel
models can be fitted with notably fewer parameters than the standard versions.

4. Prevents overfitting and undersmoothing.

As alluded to earlier, any function f that passes through the data points is a
least squares solution. Regularising the problem with the use of I-priors prevents
overfitting, with the added advantage that the posterior solution under an I-prior
does not tend to undersmooth as much as Tikhonov regularisation does (Bergsma,
2018). Undersmoothing can adversely impact the estimate of f , and in real terms
might even show features and artefacts that are not really there.

5. Better prediction.

Empirical studies and real-data examples show that predictive performance of I-
priors are comparative to, and often better than, other leading state-of-the-art
models, including the closely related GPR.

6. Straightforward inference.

Marginal likelihoods after integrating out the I-prior are easily obtained, mak-
ing model selection via likelihood comparison a viable option. This method of
comparing marginal likelihood with maximum likelihood estimate plug-ins of the
model parameters, is viewed as empirical Bayes factors comparison in the Bayesian
literature (Casella, 1985; George and Foster, 2000).
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The main drawback of using I-prior models is computational in nature, namely, the
requirement of working with an n× n matrix and its inverse, as seen in equations (1.7)
and (1.8), regardless of estimation method (ML or Bayes). Analysis of data sets that are
not more than a few thousand in size can be considered feasible; anything more than this
is debilitatingly slow to compute. In addition, care must be taken to avoid numerical
instabilities when calculating the marginal log-likelihood during parameter estimation,
which can affect gradient based optimisation or the EM algorithm.

Another issue when performing likelihood-based methods is that the optimisation
objective may be non-convex such that multiple local optima may exist. In such cases,
multiple restarts from different initialisations may ultimately lead to a global maximum,
although difficulties may be faced if numerical instabilities occur.

Lastly, a remark on model assumptions, which are twofold: 1) the assumption of
f ∈ F an RKKS; and 2) normality of errors. Of the two, the latter is more likely
to be violated, especially when dealing with discrete responses, e.g. in classification.
Deviating from the normality assumption would require approximation techniques to be
implemented in order to obtain the posterior distributions of interest.

1.6 Outline of thesis

This thesis is structured as follows:

• Following this introductory chapter, Chapter 2 provides an overview of functional
analysis, and in particular, descriptions of interesting function spaces for regression.
In Chapter 3, the concept of the Fisher information is extended to potentially
infinite-dimensional parameters. This allows us to define the Fisher information
for the regression function which parameterises the normal regression model, and
we explain how this relates to the I-prior.

• The aforementioned computational methods relating to the estimation of I-prior
models are explored in Chapter 4, namely the direct optimisation of the log-
likelihood, the EM algorithm, and MCMC methods. The goal is to describe stable
and efficient algorithms for estimating I-prior models. The R package iprior (Jamil,
2017) is the culmination of the effort put in towards completing this chapter,
which has been made publicly available on the Comprehensive R Archive Network
(CRAN).

• Many models of interest involve response variables of a categorical nature. A naïve
implementation of the I-prior model is certainly possible, but proper ways do exist
to handle non-normality of errors. Chapter 5 extends the I-prior methodology to
discrete outcomes. There, the non-Gaussian likelihood that arises in the posteriors
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are approximated by way of variational inference. The advantages of the I-prior in
normal regression models carry over into categorical response models.

• Chapter 6 is a contribution to the area of variable selection. Specifically for linear
models with p variables to select from, model comparison requires elucidation of 2p

marginal likelihoods, and this becomes infeasible when p is large. To circumvent
this issue, we use a stochastic search method to choose models that have high
posterior probabilities of occurring, equivalent to choosing models that have large
Bayes factors. We experiment with the use of I-priors to improve false selections,
especially in the presence of multicollinearity.

Chapters 4 to 6 contain R computer implementations of the statistical methodologies
described therein, and the code for replication are made available at http://myphdcode.
haziqj.ml.

Familiarity with basic estimation concepts (maximum likelihood, Bayes, empirical
Bayes) and their corresponding estimation methods (gradient-based methods, Newton,
quasi-Newton methods, MCMC, EM algorithm) are assumed throughout. Brief sup-
plementary chapters are attached for readers who wish to familiarise themselves with
topics such as variational inference and Hamiltonian Monte Carlo, which are used in
Chapters 4 and 5. These brief readings are designed to be ancillary in nature, and are
not strictly essential for the main chapters. Additionally, Appendices A to I contain ref-
erences to several statistical distributions and their properties, proofs of various claims,
and derivations of the algorithms described in this thesis.

On a closing note, a dedicated website for this PhD project has been created, and it
can be viewed at http://phd.haziqj.ml.
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Figure 1.1: Schematic representation of the organisation of the chapters of this the-
sis. Solid lines indicate requisite relevances, while dashed lines indicate supporting and
supplementary relevances. Chapters indicated by blue boxes are theoretical in nature,
while those in purple are methodological.
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