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Appendix A

Functional derivative of the
entropy

We present the functional derivative of the entropy H(p) in Equation 3.6 (p. 96). Typ-
ically, this is tackled using calculus of variations, but it can also be obtained using the
Fréchet and Gâteaux differentials. Both methods are presented.

A.1 The usual functional derivative

The functional derivative is defined as follows.

Definition A.1 (Functional derivative). Given a manifold M representing continu-
ous/smooth functions ρ with certain boundary conditions, and a functional F :M → R,
the functional derivative of F (ρ) with respect to ρ, denoted ∂F/∂ρ, is defined by∫

∂F

∂ρ
(x)ϕ(x)dx = lim

ϵ→0

F (ρ+ ϵϕ)− F (ρ)

ϵ

=

[
d
dϵF (ρ+ ϵϕ)

]
ϵ=0

,

where ϕ is an arbitrary function. The function ∂F/∂ρ as the gradient of F at the point
ρ, and

∂F (ρ, ϕ) =

∫
∂F

∂ρ
(x)ϕ(x)dx

as the directional derivative at point ρ in the direction of ϕ. Analogous to vector calculus,
the inner product with the gradient gives the directional derivative.
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Now let X be a discrete random variable with probability mass function p(x) ≥ 0,
for ∀x ∈ Ω, a finite set. The entropy is a functional of p, namely

H(p) = −
∑
x∈Ω

p(x) log p(x).

Equivalently, using the counting measure ν on Ω, we can write

H(p) = −
∫
Ω
p(x) log p(x)dν(x).

Using the definition of functional derivatives, we find that∫
Ω

∂H

∂p
(x)ϕ(x)dx =

[
d
dϵH(p+ ϵϕ)

]
ϵ=0

=

[
− d

dϵ
(
p(x) + ϵϕ(x)

)
log
(
p(x) + ϵϕ(x)

)]
ϵ=0

= −
∫
Ω

(
p(x)ϕ(x)

p(x) + ϵϕ(x)
+

ϵϕ(x)

p(x) + ϵϕ(x)
+ ϕ(x) log

(
p(x) + ϵϕ(x)

))
dx

= −
∫
Ω
(1 + log p(x))ϕ(x)dx.

Thus, (∂H/∂p)(x) = −1− log p(x).

A.2 Fréchet differential of the entropy

Since we have already introduced concepts of Fréchet and Gâteaux derivatives earlier,
we shall use those instead. Assume that the entropy H is Fréchet differentiable at p,
and that the probability densities p under consideration belong to the Hilbert space of
square integrable functions L2(Θ, ν) with inner product ⟨p, p′⟩L2(Θ,ν) =

∫
pp′ dν. Now

since the Fréchet derivative of H at p is assumed to exist, it is equal to the Gâteaux
derivative, which can be computed as follows:

∂qH(p) =
d
dtH(p+ tq)

∣∣∣∣
t=0

=
d
dt

{
−
∫
Θ

(
p(θ) + tq(θ)

)
log
(
p(θ) + tq(θ)

)
dν(θ)

} ∣∣∣∣∣
t=0

= −
∫
Θ

{
d
dt
(
p(θ) + tq(θ)

)
log
(
p(θ) + tq(θ)

)∣∣∣∣
t=0

}
dν(θ)

= −
∫
Θ

(
p(θ)q(θ)

p(θ) + tq(θ)
+

tq(θ)2

p(θ) + tq(θ)
+ q(θ) log

(
p(θ) + tq(θ)

)) ∣∣∣∣
t=0

dν(θ)

= −
∫
Θ
q(θ)

(
1 + log p(θ)

)
dν(θ)
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=
⟨
−
(
1 + log p

)
, q
⟩
Θ

= dH(p)(q).

By definition, the gradient of H at p, denoted ∇H(p), is equal to −1− log p. This agrees
with the usual functional derivative of the entropy obtained via standard calculus of
variations.
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Appendix B

Kronecker product and
vectorisation

The Kronecker product crops up in the definition of matrix normal distributions, which
is used in Chapter 5 for the I-probit model.

Definition B.1 (Kronecker product). The Kronecker matrix product, denoted by ⊗,
for two matrices A ∈ Rn×m and B ∈ Rp×q is defined by

A⊗B =


A11B A12B · · · A1mB

A21B A22B · · · A2mB
...

... . . . ...
An1B An2B · · · AnmB

 ∈ Rnp×mq.

The Kronecker product is a generalisation of the outer product for vectors to matrices.
Of use will be these properties of the Kronecker product (Zhang and Ding, 2013):

• Bilinearity and associativity. For appropriately sized matrices A, B and C,
and a scalar λ,

A⊗ (B + C) = A⊗B +A⊗ C

(A+B)⊗ C = A⊗ C +B ⊗ C

λA⊗B = A⊗ λB = λ(A⊗B)

(A⊗B)⊗ C = A⊗ (B ⊗ C)

• Non-commutative. In general, A ⊗ B ̸= B ⊗ A, but they are permutation
equivalent, i.e. A⊗B ̸= P (B ⊗A)Q for some permutation matrices P and Q.

• The mixed product property. (A⊗B)(C ⊗D) = AC ⊗BD.
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• Inverse. A ⊗ B is invertible if and only if A and B are both invertible, and
(A⊗B)−1 = A−1 ⊗B−1.

• Transpose. (A⊗B)⊤ = A⊤ ⊗B⊤.

• Determinant. If A is n×n and B is m×m, then |A⊗B| = |A|m|B|n. Note that
the exponent of |A| is the order of B and vice versa.

• Trace. Suppose A and B are square matrices. Then tr(A⊗B) = tr(A) tr(B).

• Rank. rank(A⊗B) = rank(A) rank(B).

• Matrix equations. AXB = C ⇔ (B⊤ ⊗A) vecX = vec(AXB) = vecC.

The equivalence between matrix normal and multivariate normal distributions are
established making use of vectorisation for matrices. This is defined below.

Definition B.2 (Vectorisation). The vectorisation operation ‘vec’ stacks the columns
of the matrices into one long vector, for instance, for the matrix A ∈ Rn×m

vecA = (A11, . . . , An1, A12, . . . , An2, . . . , A1m, . . . , Anm)⊤ ∈ Rnm.
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Appendix C

Statistical distributions and their
properties

This appendix is intended as a reference relating to the multivariate normal, matrix
normal, truncated univariate and multivariate normal, gamma and inverse gamma dis-
tributions, which are collated from various sources for convenience. Of interest are their
probability density functions, first and second moments, and entropy (Definition 3.5, p.
96). Note that in this part of the appendix, boldface notation for matrix and vectors
are not used.

C.1 Multivariate normal distribution

Definition C.1 (Multivariate normal distribution). Let X ∈ Rd be distributed ac-
cording to a multivariate normal (Gaussian) distribution with mean µ ∈ Rd and co-
variance matrix Σ ∈ Rd (a square, symmetric, positive-definite matrix). We say that
X ∼ Nd(µ,Σ). Then,

• Pdf. p(X|µ,Σ) = (2π)−d/2|Σ|−1/2 exp
(
− 1

2(X − µ)⊤Σ−1(X − µ)
)
.

• Moments. EX = µ, E(XX⊤) = Σ + µµ⊤.

• Entropy. H(p) = 1
2 log|2πeΣ| = d

2(1 + log 2π) + 1
2 log|Σ|.

For d = 1, i.e. X is univariate, then its pdf is p(X|µ, σ2) = 1
σϕ
(
X−µ
σ

)
, and its cdf is

F (X|µ, σ2) = Φ
(
X−µ
σ

)
, where ϕ(·) and Φ(·) are the pdf and cdf of a univariate standard

normal distribution. In the special case that Σ = diag(σ21, . . . , σ2d), then the components
of X = (X1, . . . , Xd)

⊤ are independently distributed according to Xi ∼ N(µi, σ
2
i ).
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Lemma C.1 (Properties of multivariate normal). Assume that X ∼ Nd(µ,Σ) and Y ∼
Nd(ν,Ψ), where

X =

(
Xa

Xb

)
, µ =

(
µa

µb

)
, and Σ =

(
Σa Σab

Σ⊤
ab Σb

)
.

Then,

• Marginal distributions.

Xa ∼ NdimXa(µa,Σa) and Xb ∼ NdimXb
(µb,Σb).

• Conditional distributions.

Xa|Xb ∼ NdimXa(µ̃a, Σ̃a) and Xb ∼ NdimXb
(µ̃b, Σ̃b),

where

µ̃a = µa +ΣabΣ
−1
b (Xb − µb) µ̃b = µb +Σ⊤

abΣ
−1
a (Xa − µa)

Σ̃a = Σa − ΣabΣ
−1
b Σ⊤

ab Σ̃b = Σb − Σ⊤
abΣ

−1
a Σab

• Linear combinations.

AX +BY + C ∼ Nd(Aµ+Bν + C,AΣA⊤ +BΨB⊤)

where A and B are appropriately sized matrices, and C ∈ Rd.

• Product of Gaussian densities.

p(X|µ,Σ)p(Y |ν,Ψ) ∝ p(Z|m,S)

where p(Z) is a Gaussian density, m = S(Σ−1µ+Ψ−1ν) and S = (Σ−1 +Ψ−1)−1.
The normalising constant is equal to the density of µ ∼ N(ν,Σ+Ψ).

Proof. Omitted—see Petersen and Pedersen (2012, Sec. 8). ■

Frequently, in Bayesian statistics especially, the following identities will be useful in
deriving posterior distributions involving multivariate normals.
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Lemma C.2. Let x, b ∈ Rd be a vector, X,B ∈ Rn×d a matrix, and A ∈ Rd×d a
symmetric, invertible matrix. Then,

−1

2
x⊤Ax+ b⊤x = −1

2
(x−A−1b)⊤A(x−A−1b) +

1

2
b⊤A−1b

−1

2
tr(X⊤AX) + tr(B⊤X) = −1

2
tr
(
(X −A−1B)⊤A(X −A−1B)

)
+

1

2
tr(B⊤A−1B).

Proof. Omitted—see Petersen and Pedersen (2012, Sec. 8.1.6). ■

Lemma C.3. Let X ∼ Np(µθ,Σθ), that is, the mean vector µθ and covariance matrix
Σθ depends on a real, q-dimensional vector θ. The Fisher information matrix U ∈ Rq×q

for θ has (i, j) entries given by

Uij =
∂µ⊤θ
∂θi

Σ−1
θ

∂µθ
∂θj

+
1

2
tr
(
Σ−1
θ

∂Σθ

∂θi
Σ−1
θ

∂Σθ

∂θj

)
(C.1)

for i, j = 1, . . . , q.

Proof. Define the derivative of a matrix Σ ∈ Rp×p with respect to a scalar z, denoted
∂Σ/∂z ∈ Rp×p, by (∂Σ/∂z)ij = ∂Σij/∂z, i.e. derivatives are taken element-wise. The
two identities below are useful:

∂

∂z
trΣ = tr ∂Σ

∂z
(C.2)

∂

∂z
log|Σ| = tr

(
Σ−1∂Σ

∂z

)
(C.3)

∂Σ−1

∂z
= −Σ−1∂Σ

∂z
Σ−1 (C.4)

A useful reference for these identities is Petersen and Pedersen (2012).

Differentiating the log-likelihood for θ with respect to the i’th component of θ yields

∂

∂θi
L(θ|X) = − 1

2

∂

∂θi
log|Σθ| −

1

2

∂

∂θi
tr(Σ−1

θ (X − µθ)(X − µθ)
⊤)

= − 1

2
tr
(
Σ−1
θ

∂Σθ

∂θi

)
− 1

2
tr
(
∂Σ−1

θ

∂θi
(X − µθ)(X − µθ)

⊤

)

− 1

2
tr
(
Σ−1
θ

∂

∂θi

(
(X − µθ)(X − µθ)

⊤))

= −

(A)︷ ︸︸ ︷
1

2
tr
(
Σ−1
θ

∂Σθ

∂θi

)
−

(B)︷ ︸︸ ︷
1

2
tr
(
Σ−1
θ

∂Σθ

∂θi
Σ−1
θ (X − µθ)(X − µθ)

⊤
)

= +

(C)︷ ︸︸ ︷
tr
(
Σ−1
θ (X − µθ)

∂µ⊤θ
∂θi

)
.
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Taking derivatives again, this time with respect to θj , of the three parts (A), (B) and
(C) above, we get:

• (A)

1

2

∂

∂θj
tr
(
Σ−1
θ

∂Σθ

∂θi

)
=

1

2
tr
(
∂Σ−1

θ

∂θj

∂Σθ

∂θi
+Σ−1

θ

∂2Σθ

∂θiθj

)

• (B)

1

2

∂

∂θj
tr
(
Σ−1
θ

∂Σθ

∂θi
Σ−1
θ (X − µθ)(X − µθ)

⊤
)

=
1

2
tr
(
∂Σ−1

θ

∂θj

∂Σθ

∂θi
Σ−1
θ (X − µθ)(X − µθ)

⊤

)

+
1

2
tr
(
Σ−1
θ

∂2Σθ

∂θiθj
Σ−1
θ (X − µθ)(X − µθ)

⊤
)

+
1

2
tr
(
Σ−1
θ

∂Σθ

∂θi

∂Σ−1
θ

∂θj
(X − µθ)(X − µθ)

⊤

)

− tr
(
Σ−1
θ

∂Σθ

∂θi
Σ−1
θ

∂µθ
∂θj

(X − µθ)
⊤
)

• (C)

∂

∂θj
tr
(
Σ−1
θ (X − µθ)

∂µ⊤θ
∂θi

)
= tr

(
∂Σ−1

θ

∂θj
(X − µθ)

∂µ⊤θ
∂θi

− Σ−1
θ

∂µθ
∂θj

∂µ⊤θ
∂θi

− Σ−1
θ (X − µθ)

∂2µθ
∂θi∂θj

)

The Fisher information matrix U contains (i, j) entries equal to the expectation of
− ∂2

∂θiθj
L(θ|X). Using the fact that 1) E[X −µθ] = 0; 2) E[trΣ] = tr(EΣ); 3) E[XX⊤] =

Σθ; and 4) the trace is invariant under cyclic permutations, we get

Uij = tr
(
Σ−1
θ

∂µθ
∂θj

∂µ⊤θ
∂θi

)
+

1

2
tr
(
������∂Σ−1

θ

∂θj

∂Σθ

∂θi
+

�����
Σ−1
θ

∂2Σθ

∂θiθj
−

������∂Σ−1
θ

∂θj

∂Σθ

∂θi
−

�����
Σ−1
θ

∂2Σθ

∂θiθj
− ∂Σθ

∂θi

∂Σ−1
θ

∂θj

)

=
∂µ⊤θ
∂θi

Σ−1
θ

∂µθ
∂θj

+
1

2
tr
(
Σ−1
θ

∂Σθ

∂θi
Σ−1
θ

∂Σθ

∂θj

)
as required. ■
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C.2 Matrix normal distribution

Definition C.2 (Matrix normal distribution). Let X ∈ Rn×m matrix, and let X follow
a matrix normal distribution with mean µ ∈ Rn×m and row and column variances
Σ ∈ Rn×n and Ψ ∈ Rm×m respectively, which we denote by X ∼ MNn,m(µ,Σ,Ψ). Then,

• Pdf. p(X|µ,Σ,Ψ) = (2π)−nm/2|Σ|−m/2|Ψ|−n/2e−
1
2

tr
(
Ψ−1(X−µ)⊤Σ−1(X−µ)

)
.

• Moments. EX = µ, Var(Xi·) = Ψ for i = 1, . . . , n, and Var(X·j) = Σ for
j = 1, . . . ,m.

• Entropy. H(p) = 1
2 log|2πe(Ψ⊗ Σ)| = nm

2 (1 + log 2π) + 1
2 log|Σ|m|Ψ|n.

The matrix normal distribution is simply an extension of the Gaussian distribution to
matrices. A matrix normal random variable can be expressed as a multivariate normal
random variable.

Lemma C.4 (Equivalence between matrix and multivariate normal). X ∼ MNn,m(µ,Σ,Ψ)

if and only if vecX ∼ Nnm(vecµ,Ψ⊗ Σ).

Proof. In the exponent of the matrix normal pdf, we have

−1

2
tr
(
Ψ−1(X − µ)⊤Σ−1(X − µ)

)
= −1

2
vec(X − µ)⊤ vec(Σ−1(X − µ)Ψ−1)

= −1

2
vec(X − µ)⊤(Ψ−1 ⊗ Σ−1) vec(X − µ)

= −1

2
(vecX − vecµ)⊤(Ψ⊗ Σ)−1(vecX − vecµ).

Also, |Σ|−m/2|Ψ|−n/2 = |Ψ ⊗ Σ|−1/2. This converts the matrix normal pdf to that of a
multivariate normal pdf. ■

Some useful properties of the matrix normal distribution are listed:

• Expected values.

E[(X − µ)(X − µ)⊤] = tr(Ψ)Σ ∈ Rn×n

E[(X − µ)⊤(X − µ)] = tr(Σ)Ψ ∈ Rm×m

E(XAX⊤) = tr(A⊤Ψ)Σ + µAµ⊤

E(X⊤BX) = tr(ΣB⊤)Ψ + µ⊤Bµ

E[XCX] = ΣC⊤Ψ+ µCµ
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• Transpose. X⊤ ∼ MNm,n(µ
⊤,Ψ,Σ).

• Linear transformation. Let A ∈ Ra×n be of full-rank a ≤ n and B ∈ Rm×b be
of full-rank b ≤ m. Then AXB ∼ MNa,b(µ

⊤, AΣA⊤, B⊤ΨB).

• Iid. If Xi
iid∼ Nm(µ,Ψ) for i = 1, . . . , n, and we arranged these vectors row-wise

into the matrix X = (X⊤
1 , . . . , X

⊤
n )⊤ ∈ Rn×m, then X ∼ MN(1nµ

⊤, In,Ψ).

C.3 Truncated univariate normal distribution

Definition C.3 (Truncated univariate normal distribution). Let X ∼ N(µ, σ2) with
the random variable X restricted to the interval (a, b) ⊂ R. Then we say that X
follows a truncated normal distribution, and we denote this by X ∼ tN(µ, σ2, a, b). Let
α = (a− µ)/σ, β = (b− µ)/σ, and C = Φ(β)− Φ(α). Then,

• Pdf. p(X|µ, σ, a, b) = C−1(2πσ2)−1/2e−
1

2σ2 (X−µ)2 = σC−1ϕ(X−µ
σ ).

• Moments.
EX = µ+ σ

ϕ(α)− ϕ(β)

C

EX2 = σ2 + µ2 + σ2
αϕ(α)− βϕ(β)

C
+ 2µσ

ϕ(α)− ϕ(β)

C

VarX = σ2

[
1 +

αϕ(α)− βϕ(β)

C
−
(
ϕ(α)− ϕ(β)

C

)2
]

• Entropy.

H(p) =
1

2
log 2πeσ2 + logC +

αϕ(α)− βϕ(β)

2C

=
1

2
log 2πeσ2 + logC +

1

2σ2
·

VarX−σ2+(EX−µ)2︷ ︸︸ ︷
σ2
αϕ(α)− βϕ(β)

C

=
1

2
log 2πσ2 + logC +

1

2σ2
E[X − µ]2

because VarX + (EX − µ)2 = EX2 −����(EX)2 +����(EX)2 + µ2 − 2µEX.

For binary probit models, the distributions that come up are one-sided truncations
at zero, i.e. tN(µ, σ2, 0,+∞) (upper tail/positive part) and tN(µ, σ2,−∞, 0) (lower
tail/negative part), for which their moments are of interest. As an aside, if µ = 0 then
the truncation tN(0, σ2, 0,+∞) ≡ N+(0, σ

2) is called the folded-normal distribution. For
the positive one-sided truncation at zero, C = Φ(+∞) − Φ(−µ/σ) = 1 − Φ(−µ/σ) =

Φ(µ/σ), and for the negative one-sided truncation at zero, C = Φ(−µ/σ) − Φ(−∞) =

1 − Φ(µ/σ). Additionally, if σ = 1, then tN(0, 1, 0,+∞) ≡ N+(0, 1) is called the half-
normal distribution.
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One may simulate random draws from a truncated normal distribution by drawing
from N(µ, σ2) and discarding samples that fall outside (a, b). Alternatively, the inverse-
transform method using

X = µ+ σΦ−1 (Φ(α) + UC)

with U ∼ Unif(0, 1) will work too. Either of these methods will work reasonably well
as long as the truncation region is not too far away from µ, but neither is particularly
efficient. Efficient algorithms have been explored which are along the lines of either
accept/reject algorithms (Robert, 1995), Gibbs sampling (Damien and Walker, 2001),
or pseudo-random number generation algorithms (Chopin, 2011). The latter algorithm
is inspired by the Ziggurat algorithm (Marsaglia and Tsang, 2000) which is considered
to be the fastest Gaussian random number generator.

C.4 Truncated multivariate normal distribution

Definition C.4 (Truncated multivariate normal distribution). Consider the restric-
tion of X ∼ Nd(µ,Σ) to a convex subset1 A ⊂ Rd. Call this distribution the trun-
cated multivariate normal distribution, and denote it X ∼ tNd(µ,Σ,A). The pdf is
p(X|µ,Σ,A) = C−1ϕ(X|µ,Σ)1(X ∈ A), where

C =

∫
A
ϕ(x|µ,Σ)dx = P(X ∈ A).

Generally speaking, there are no closed-form expressions for E[g(X)] for any well-
defined functions g on X. One strategy to obtain values such as EX (mean), EX2

(second moment) and E[log p(X)] (entropy) would be Monte Carlo integration. If
X(1), . . . , X(T ) are samples from X ∼ tNd(µ,Σ,A), then Ê g(X) = 1

T

∑T
t=1 g(X

(t)).

Sampling from a truncated multivariate normal distribution is described by Robert
(1995), who used a Gibbs-based approach, which we now describe. Assume that the
one-dimensional slices of A

Ak(X−j) = {Xj | (X1, . . . , Xj−1, Xj , Xj+1, . . . , Xd) ∈ A}

are readily available so that the bounds or anti-truncation region of Xj given the rest
of the components X−j are known to be (x−j , x

+
j ). Using properties of the normal

1A convex subset is a subset of a space that is closed under convex combinations. In Euclidean space,
for every pair of points in a convex set, all the points that lie on the straight line segment which joins
the pair of points are also in the set.
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distribution, the full conditionals of Xj given X−j is

Xj |X−j ∼ tN(µ̃j , σ̃
2
j , x

−
j , x

+
j )

µ̃j = µj +Σ⊤
j,−jΣ−j,−j(x−j − µ−j)

σ̃2j = Σ11 − Σ⊤
j,−jΣ−j,−jΣj,−j .

According to Robert (1995), if Ψ = Σ−1, then

Σ−1
−j,−j = Ψ−j,−j −Ψj,−jΨ

⊤
−j,−j/Ψjj

which means that we need only compute one global inverse Σ−1. Therefore, the Gibbs
sampler makes draws from truncated normal distributions in the following sequence,
given initial values X(0):

• Draw X
(t)
1 |X(t)

2 , . . . , X
(t)
d ∼ tN(µ̃1, σ̃

2
1, x

−
1 , x

+
1 ).

• Draw X
(t)
2 |X(t+1)

1 , X
(t)
3 , . . . , X

(t)
d ∼ tN(µ̃2, σ̃

2
1, x

−
2 , x

+
2 ).

• · · ·

• Draw X
(t)
d |X(t+1)

1 , . . . , X
(t+1)
d−1 ∼ tN(µ̃d, σ̃

2
d, x

−
d , x

+
d ).

In a later work, Damien and Walker (2001) introduce a latent variable Y ∈ R such
that the joint pdf of X and Y is

p(X1, . . . , Xd, Y ) ∝ exp(−Y /2)1
(
Y > (X − µ)⊤Σ−1(X − µ)

)
1(X ∈ A).

Now, the Gibbs conditional densities for the Xk’s are given by

p(Xj |X−j , Y ) ∝ 1(Xj ∈ Bj)

where
Bj ∈ (x−j , x

+
j ) ∩ {Xj | (X − µ)⊤Σ−1(X − µ) < Y }.

Thus, given values for X−j and Y , the bounds for Xj involves solving a quadratic equa-
tion in Xj . The Gibbs conditional density for Y |X is a shifted exponential distribution,
which can be sampled using the inverse-transform method. Thus, both X and Y can be
sampled directly from uniform variates.

For probit models, we are interested in the conical truncations Cj = {Xj > Xk|k ̸=
j, and k = 1, . . . ,m} for which the j’th component of X is largest. These truncations
form cones in d-dimensional space such that C1 ∪ · · · ∪ Cd = Rd, and hence the name.

In the case where Σ is a diagonal matrix, the conically truncated multivariate normal
distributions are easier to deal with due to the independence structure in the covariance
matrix. In particular, most calculations of interest involve only a one dimensional inte-
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gral of products of normal cdfs. We present some results that we have not previously
seen before elsewhere.

Lemma C.5. Let X ∼ tNd(µ,Σ, Cj), with µ = (µ1, . . . , µd)
⊤ and Σ = diag(σ21, . . . , σ2d),

and Cj = {Xj > Xk|k ̸= j, and k = 1, . . . ,m} a conical truncation of Rd such that the
j’th component is largest. Then,

(i) Pdf. The pdf of X has the following functional form:

p(X) =
C−1

σ1 · · ·σd(2π)d/2
exp

[
−1

2

d∑
i=1

(
xi − µi
σi

)2
]

where ϕ is the pdf of a standard normal distribution and

C = EZ

[ d∏
i=1
i ̸=j

Φ

(
σj
σi
Z +

µj − µi
σi

)]

where Z ∼ N(0, 1).

(ii) Moments. The expectation EX =
(

EX1, . . . ,EXd

)⊤ is given by

EXi =

µi − σiC
−1 EZ

[
ϕi
∏

k ̸=i,j Φk

]
if i ̸= j

µj − σj
∑

i ̸=j

(
EXi − µi

)
if i = j

and the second moments E[X − µ]2 are given by

E(Xi−µi)2 =

σ
2
i + (µj − µi)(EXi − µi) + σiσjC

−1 EZ

[
Zϕi

∏
k ̸=i,j Φk

]
if i ̸= j

C−1σ2j EZ

[
Z2
∏

k ̸=j Φk

]
if i = j

where we had defined

ϕi = ϕi(Z) = ϕ

(
σjZ + µj − µi

σi

)
, and

Φi = Φi(Z) = Φ

(
σjZ + µj − µi

σi

)
.

(iii) Entropy. The entropy is given by

H(p) = logC +
d

2
log 2π +

1

2

d∑
i=1

logσ2i +
1

2

d∑
i=1

1

σ2i
E[xi − µi]

2.

Proof. See Appendix D for the proof. ■
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C.5 Gamma distribution

Definition C.5 (Gamma distribution). For X ∈ R≥0, let X be distributed according
to the gamma distribution with shape s and rate r, denoted X ∼ Γ(s, r). Then,

• Pdf. p(X) = Γ(s)−1rsXs−1e−rX .

• Moments. EX = s/r, VarX = s/r2.

• Entropy. H(p) = s− log r + logΓ(s) + (1− s)ψ(s).

In the above, Γ(·) and ψ(·) are the gamma and digamma functions respectively,
defined by

Γ(a) =

(a− 1)! if a ∈ Z+∫∞
0 ua−1e−u du otherwise

and
ψ(a) =

∂

∂a
logΓ(a) = ∂Γ(a)/∂a

Γ(a)
.

Often, the gamma distribution is parameterised according to shape s and scale σ = 1/r

parameters, X ∼ Γ(s, σ).

C.6 Inverse gamma distribution

Definition C.6 (Inverse gamma distribution). For X ∈ R≥0, a random variable X

distributed according to an inverse gamma distribution with parameters s (shape) and
σ (scale) is denoted by X ∼ Γ−1(s, σ). Then,

• Pdf. p(X) = Γ(s)−1σsX−(s+1)e−σ/X .

• Moments. EX = σ/(s− 1), VarX = σ2
(
(s− 1)2(s− 2)

)−1.

• Entropy. H(p) = s+ log
(
σΓ(s)

)
− (1 + s)ψ(s).

with Γ(·) and ψ(·) representing the gamma and digamma functions respectively, as de-
fined in Appendix C.5.

Lemma C.6. If X ∼ Γ(s, r) (shape and rate parameterisation), then 1/X ∼ Γ−1(s, r).

Proof. Let Y = 1/X. Then the pdf of Y is

pY (Y ) = pX(1/Y )

∣∣∣∣ ∂∂Y (1/Y )

∣∣∣∣
= Γ(s)−1rs(1/Y )s−1e−r/Y (1/Y 2)

= Γ(s)−1rsY −(s+1)e−r/Y

which is the pdf of an inverse gamma with shape s and scale r. ■
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Appendix D

Proofs related to conical
truncations of multivariate
normals

We present the proof for Lemma C.5 related to the conically truncated multivariate
normal distribution with an independent covariance matrix structure, which we had not
encountered in the literature.

D.1 Proof of Lemma C.5: Pdf

Using the fact that
∫
p(x)dx = 1, and that∫

· · ·
∫
[xi < xj ,∀i ̸= j] ·

d∏
i=1

ϕ(xi|µi, σ2i )dx1 · · · dxd

=

∫
· · ·
∫

1[xi < xj , ∀i ̸= j]
d∏

i=1

[
1

σi
ϕ

(
xi − µi
σi

)]
dx1 · · · dxd

=

∫
· · ·
∫

1[xi < xj , ∀i ̸= j]
1

σj
ϕ

(
xj − µj
σj

) d∏
i=1
i ̸=j

[
1

σi
ϕ

(
xi − µi
σi

)]
dx1 · · · dxd

=

∫ d∏
i=1
i ̸=j

Φ

(
xj − µi
σi

)
1

σj
ϕ

(
xj − µj
σj

)
dxj

=

∫ d∏
i=1
i ̸=j

Φ

(
σjz + µj − µi

σi

)
ϕ(z)dz

(by using the standardisation z = (xj − µj)/σj)
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=EZ

[ d∏
i=1
i ̸=j

Φ

(
σj
σi
Z +

µj − µi
σi

)]

the proof follows directly.

D.2 Proof of Lemma C.5: Moments

Recall that for Y ∼ tN(µ, σ2,−∞, b), for some function g of Y , we have that

E[g(Y )] = Φ(β)−1

∫
[y < b] · g(y)ϕ(y|µ, σ2)dy,

and in particular, we have

E(Y − µ) = −σ ϕ(β)
Φ(β)

(D.1)

E(Y − µ)2 − σ2 = −σ2βϕ(β)
Φ(β)

(D.2)

where β = (b − µ)/σ. For the conically truncated multivariate normal distribution
X ∼ tNd(µ,Σ,Aj), where Σ = diag(σ21, . . . , σ2d), the independence structure of Σ makes
it possible to consider the expectations of each of the components separately by marginal-
ising out the rest of the components. For simplicity, denote p(xk) = ϕ(xk|µk, σk) =

σ−1
k ϕ(xk−µk

σk
). For i ̸= j, we have

E[g(Xi)] = C−1

∫
· · ·
∫

[xk < xj ,∀k ̸= j] · g(xi)
d∏

k=1

p(xk)dx1 · · · dxd

= C−1Φ((xj − µj)/σj)

Φ((xj − µj)/σj)

∫∫
[xi < xj ] · g(xi)p(xi)p(xj)

d∏
k=1
k ̸=i,j

Φ

(
xj − µk
σk

)
dxi dxj

= C−1

∫
EXi∼tN(µi,σ2

i ,−∞,xj)
[g(Xi)]

d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxj (D.3)

where C is the normalising constant for X, while for the j’the component we have

E[g(Xj)] = C−1

∫
· · ·
∫
[xk < xj ,∀k ̸= j] · g(xj)

d∏
k=1

p(xk)dx1 · · · dxd

= C−1

∫
g(xj)

d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxd. (D.4)
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Plugging in (D.1) for g(Xi) = Xi − µi in (D.3) we get

EXi − µi = −C−1

∫ (
σiϕ

(
xj − µi
σi

)/
Φ

(
xj − µi
σi

)) d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxj

= −σiC−1

∫
ϕ

(
xj − µi
σi

) d∏
k=1
k ̸=i,j

Φ

(
xj − µk
σk

)
p(xj)dxj

= −σiC−1

∫
ϕ

(
σjz + µj − µi

σi

) d∏
k=1
k ̸=j

Φ

(
σjz + µj − µk

σk

)
ϕ(z)dz

= −σiC−1 EZ

[
ϕ

(
σjZ + µj − µi

σi

) d∏
k=1
k ̸=j

Φ

(
σjZ + µj − µk

σk

)]

where Z is the distribution of N(0, 1), and we had used a change of variable xj = σjz+µj ,
so that p(xj) = σ−1

j ϕ(z) and dxj = σjdz. For the j’th component, substitute g(xj) =
xj − µj in (D.4) to get

EXj − µj = C−1

∫
(xj − µj)

d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxj

= C−1σj

∫
z

d∏
k=1
k ̸=j

Φ

(
σjz + µj − µk

σk

)
ϕ(z)dz

= σj

d∑
i=1
i ̸=j

σiC
−1 E

[
ϕ

(
σjZ + µj − µi

σi

) d∏
k=1
k ̸=i,j

Φ

(
σjZ + µj − µk

σk

)]

= −σj
d∑

i=1
i ̸=j

(
EXi − µi

)
,

where we have made use of Lemma D.1 in the second last step.
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For the second moments, plug in (D.2) for g(Xi) = (Xi − µi)
2 − σ2i in (D.3) to get

E(Xi − µi)
2 − σ2i = − σ�2i C

−1

∫xj−µi−µj+µj︷ ︸︸ ︷
xj − µi

��σi
·
ϕ
(
(xj − µi)/σi

)
Φ
(
(xj − µi)/σi

) d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxj

= − σiC
−1

∫
(xj − µj)ϕ

(
xj − µi
σi

) d∏
k=1
k ̸=i,j

Φ

(
xj − µk
σk

)
p(xj)dxj

+ (µj − µi) ·

EXi−µi︷ ︸︸ ︷
−σiC−1

∫
ϕ

(
xj − µi
σi

) d∏
k=1
k ̸=i,j

Φ

(
xj − µk
σk

)
p(xj)dxj

= (µj − µi)(EXi − µi)

+ σiC
−1

∫
σjzϕ

(
xj − µi
σi

) d∏
k=1
k ̸=i,j

Φ

(
σjz + µj − µk

σk

)
ϕ(z)dz

= (µj − µi)(EXi − µi)

+ σiσjC
−1 E

[
Zϕ

(
σjZ + µj − µi

σi

) d∏
k=1
k ̸=i,j

Φ

(
σjZ + µj − µk

σk

)]

And similarly, for the j’th component

E(Xj − µj)
2 = C−1

∫
(xj − µj)

2
d∏

k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxj

= C−1σ2j

∫
z2

d∏
k=1
k ̸=j

Φ

(
zσj + µj − µk

σk

)
p(xj)dz

= C−1σ2j EZ

[
Z2

d∏
k=1
k ̸=j

Φ

(
Zσj + µj − µk

σk

)]
.

Lastly, we used the following result in the derivation above.

Lemma D.1. Let Z ∼ N(0, 1). Then for all m ∈ {N |m > 1} and (µ, σ) ∈ R× R+,

E
[
Z

m∏
k=1
k ̸=j

Φ(σkZ + µk)

]
=

m∑
i=1
i ̸=j

E
[
σiϕ(σiZ + µi)

m∏
k=1
k ̸=i,j

Φ(σkZ + µk)

]

for some j ∈ {1, . . . ,m}.
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Proof. Use the fact that for any differentiable function g, E[Zg(Z)] = E[g′(Z)], and
apply the result with the function gm : z 7→

∏
k ̸=j Φ(σkz + µk). All that is left is to

derive the derivative of g, and we use an inductive proof to do this. Introduce the
following notation for convenience:

ϕi = ϕ(σiz + µi)

Φi = Φ(σiz + µi)

The simplest case is when m = 2, which can be trivially shown to be true. Without
loss of generality, let j = 1. Then

g2(z) = Φ2

⇒ ġ2(z) = σ2ϕ2 =
2∑

i=1
i ̸=1

[
σiϕi

2∑
k=1
k ̸=1,2

Φk

]
.

Now assume that the inductive hypothesis holds for some m ∈ {N |m > 1}. That is,
the derivative of gm(z) =

∏
k ̸=j Φk,

ġm(z) =
m∑
i=1
i ̸=j

[
σiϕi

m∏
k=1
k ̸=i,j

Φk

]
,

is assumed to be true. Also assume that, without loss of generality, j ̸= m + 1. Then,
the derivative of

gm+1(z) =
m+1∏
k=1
k ̸=j

Φk = gm(z)Φm+1

is found to be

ġm+1(z) = σm+1ϕm+1gm(z) + ġm(z)Φm+1

= σm+1ϕm+1

m∏
k=1
k ̸=j

Φk +

m∑
i=1
i ̸=j

[
σiϕi

m∏
k=1
k ̸=i,j

Φk

]
Φm+1

= σm+1ϕm+1

m+1∏
k=1

k ̸=j,m+1

Φk +

m∑
i=1
i ̸=j

[
σiϕi

m+1∏
k=1
k ̸=i,j

Φk

]

=
m+1∑
i=1
i ̸=j

[
σiϕi

m+1∏
k=1
k ̸=i,j

Φk

]
,

as required for the inductive proof. Using linearity of expectations, the proof is complete.
■
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D.3 Proof of Lemma C.5: Entropy

As a direct consequence of the definition of entropy,

H(p) = −E[log p(X)]

= −E
[
− logC − d

2
log 2π − 1

2

d∑
i=1

logσ2i −
1

2

d∑
i=1

(
xi − µi
σi

)2
]

= logC +
d

2
log 2π +

1

2

d∑
i=1

logσ2i +
1

2

d∑
i=1

1

σ2i
E[xi − µi]

2.
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Appendix E

I-prior interpretation of the
g-prior

The I-prior for β in a standard linear model resembles the objective g-prior (Zellner,
1986) for regression coefficients,

β ∼ Np

(
0, g(X⊤ΨX)−1

)
,

although they are quite different objects. The g-prior for β has the inverse (scaled)
Fisher information matrix as its covariance matrix. This, in itself, has a much different
and arguably counterintuitive meaning: large amounts of Fisher information about β

corresponds to a small prior variance, and hence less deviation away from the prior mean
of zero in estimating β. The choice of the hyperparameter g has been the subject of much
debate, with choices ranging from fixing g = n (corresponding to the concept of unit
Fisher information), to fully Bayesian and empirical Bayesian methods of estimating g
from the data.

On the other hand, we note that the g-prior has an I-prior interpretation when argued
as follows. Assume that the regression function f lies in the continual dual space of Rp

equipped with the inner product ⟨x,x′⟩X = x⊤(X⊤ΨX)−1x. With this inner product
and from (3.3) (p. 90), the Fisher information on β is

Ig(β) =
n∑

i=1

n∑
j=1

ψij(X⊤ΨX)−1xi ⊗ (X⊤ΨX)−1xj

= (X⊤ΨX)−1
�����(X⊤ΨX)������

(X⊤ΨX)−1

= (X⊤ΨX)−1,

and this, rather than the usual X⊤ΨX as the prior covariance matrix for β, means that
the I-prior is in fact the standard g-prior.
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The metric induced by the inner product is actually the Mahalanobis distance, a scale-
invariant natural distance if the covariates are measured on different scales. To expand
on this idea, circle back to the regression function and write it as f(x) = ⟨x,β⟩X . In
usual least squares regression, the choice of inner product is irrelevant, so the usual dot
product is commonly used (however, as we have seen above, the choice of inner product
determines the form of the Fisher information for β). In particular, suppose that all
the xik’s, k = 1, . . . , p for each unit i = 1, . . . , n are measured on the same scale; for
instance, these could be measurements in centimetres. In this case, the dot product
is reasonable, because ⟨xi,xj⟩ =

∑p
k=1 xikxjk and the inner product has a coherent

unit, namely the squared unit of the xik’s. However, if they were a mix of various
scaled measurements, then obviously the inner product’s unit is incoherent—one would
be resorted to adding measurements in different units, for example, cm2 and kg2 and so
on. In such a case, a unitless inner product is appropriate, like the Mahalonobis inner
product, which technically rescales the xik’s to unity. In summary, if the covariates are
all measured on the same scale, then the I-prior is appropriate, and if not, the g-prior is
appropriate.
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Appendix F

Additional details for various
I-prior regression models

These are additional details relating to discussion on various I-prior regression models in
Section 4.1 of Chapter 4 (p. 102). These details relate to the standard linear multilevel
model and the naïve classification model.

F.1 The I-prior for standard multilevel models

We show the corresponding I-prior for the regression coefficients of the standard linear
multilevel model (4.3). Write α = β0, and for simplicity, assume iid errors, i.e., Ψ = ψIn.
The form of f ∈ F is now f(x(j)

i , j) =
∑nj′

i′=1

∑m
j′=1 hλ

(
(x(j)

i , j), (x(j′)
i′ , j′)

)
wi′j′ , where

each wi′j′ ∼ N(0, ψ−1).

Now, functions in the scaled RKHS F2 have the form

f2(j) =

nj′∑
i=1

m∑
j′=1

λ2

(
δjj′

pj
− 1

)
wij′

= λ2

(
w+j

pj
− w++

)
,

where a ‘+’ in the index of wik indicates a summation over that index, and pj is the
empirical distribution over M, i.e. pj = nj/n. Clearly f2(j) is a variable depending on
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j, so write f2(j) = β0j . The distribution of β0j is normal with mean zero and variance

Varβ0j = λ22

(
��njψ

n�2j /n
2
+ nψ

)

= nψλ22

(
1

pj
+ 1

)
.

The covariance between any two random intercepts β0j and β0j′ is

Cov(β0j , β0j′) = Cov
[
λ2

(
w+j

pj
− w++

)
, λ2

(
w+j′

pj′
− w++

)]
=

λ22
pjpj′ ��������:0

Cov(w+j , w+j′) − λ22
pj

Cov(w+j , w++)−
λ22
pj′

Cov(w++, w+j′)

+ λ22 Cov(w++, w++)

= − λ22

��nj /n
��njψ − λ22

��nj′ /n
��nj′ψ + λ22nψ

= − nψλ22.

Functions in F12, on the other hand, have the form

f12(xi, j) =

nj′∑
i′=1

m∑
j′=1

λ1λ2 · x̃(j)⊤
i x̃(j′)

i′ ·
(
δjj′

pj
− 1

)
wi′j′

= x̃(j)⊤
i

λ1λ2
pj

nj∑
i′=1

x̃(j)
i′ wi′j − λ1λ2

nj′∑
i′=1

m∑
j′=1

x̃(j′)
i′ wi′j′


︸ ︷︷ ︸

β1j

,

and this is, as expected, a linear form dependent on cluster j. We can calculate the
variance for β1j to be

Varβ1j = λ21λ
2
2 Var

(
1

pj
X̃⊤

j wj − X̃⊤w
)

= λ21λ
2
2

(
ψ

n2j/n
2
X̃⊤

j X̃j + ψX̃⊤X̃ − 1

pj
X̃⊤

j Cov(wj ,w)X̃⊤

)

= nψλ21λ
2
2

(
1

pj
Sj + S − Sj

)
= nψλ21λ

2
2

[(
1

pj
− 1

)
Sj + S

]
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where Sj = 1
nj

∑nj

i=1(x
(j)
i − x̄)⊤(x(j)

i − x̄), S = 1
n

∑nj

i=1

∑m
j=1(x

(j)
i − x̄)⊤(x(j)

i − x̄), and
x̄ = 1

n

∑nj

i=1

∑m
j=1 x(j)

i . The covariance between two vectors of the random slopes is

Cov(β1j ,β1j′) = λ21λ
2
2 Cov

(
1

pj
X̃⊤

j wj − X̃⊤w, 1

pj′
X̃⊤

j′wj′ − X̃⊤w
)

= ψλ21λ
2
2

(
X̃⊤X̃ − 1

pj
X̃⊤

j X̃j −
1

pj′
X̃⊤

j′X̃j′

)
= nψλ21λ

2
2

(
S − Sj − Sj′

)
.

Another quantity of interest is the covariance between the random intercepts and
random slopes:

Cov[β0j ,β1j ] = λ1λ
2
2 Cov

[
1

pj
1⊤
nj

wj − 1⊤
n w, 1

pj
X̃⊤

j wj − X̃⊤w
]

= ψλ1λ
2
2

(
���*0
1⊤
n X̃ +

1

p2j
1⊤
nj

X̃j −
2

pj
1⊤
nj

X̃j

)

= nψλ1λ
2
2

[(
1

pj
− 2

)
1

nj

nj∑
i=1

(x(j)
i − x̄)

]

= nψλ1λ
2
2

(
1

pj
− 2

)
(x̄(j) − x̄)

and

Cov(β0j ,β1j′) = λ1λ
2
2 Cov

(
1

pj
1⊤
nj

wj − 1⊤
n w, 1

pj′
X̃⊤

j′wj′ − X̃⊤w
)

= ψλ1λ
2
2

(
���*0
1⊤
n X̃ +

1

pjpj′
1⊤
nj�������:0

Cov(wj ,wj′) X̃j′ −
1

pj
1⊤
nj

X̃j

− 1

pj′
1⊤
nj′

X̃j′

)
= nψλ1λ

2
2

(
− 1

nj

nj∑
i=1

(x(j)
i − x̄)− 1

nj′

nj′∑
i=1

(x(j′)
i − x̄)

)
= nψλ1λ

2
2

(
2x̄ − x̄(j) − x̄(j′)

)
.

F.2 The I-prior for naïve classification

For the naïve I-prior classification model (4.7), the I-prior is derived as follows. Firstly,
the functions in FM and FX need necessarily be zero-mean functions (as per the func-
tional ANOVA definition in Definition 2.36 (p. 79), but also, as per the definition
of the Pearson RKHS and centred identity kernel RKHS). What this means is that
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∑m
j=1 αj = 0,

∑m
j=1 fj(xi) = 0, and

∑n
i=1 fj(xi) = 0. In particular,

E
[ m∑

j=1

yij

]
=

m∑
j=1

(α+ αj + fj(xi))

= mα+

�
�
�
�
��>

0
m∑
j=1

αj +

�
�
�

�
�>
0

m∑
j=1

fj(xi)

and since
∑m

j=1 yij = 1, we get the ML estimate α̂ = 1/m, and thus the grand intercept
can be fixed to resolve identification.

It is much more convenient to work in vector and matrix form, so let us introduce
some notation. Let w (c.f. y, f and ϵ) be an n × m matrix whose (i, j) entries con-
tain wij (c.f. yij , f(xi, j), and ϵij). The row-wise entries of w are independent of
each other (independence assumption of the n observations), while any two of their
columns have covariance as specified in Ψ. This means that w follows a matrix nor-
mal distribution MNn,m(0, In,Ψ), which implies vec w ∼ Nnm(0,Ψ⊗ In), and similarly,
ϵ ∼ Nnm(0,Ψ−1 ⊗ In). Denote by Bη the n × n kernel matrix with entries supplied
by kernel 1 + bη over X × X , and A the m×m matrix with entries supplied by a over
M×M. From (4.7), we have that

f = BηwA ∈ Rn×m,

and thus vec f ∼ Nnm(0,AΨA ⊗ B2
η). As y = 1nα

⊤ + f + ϵ, where α ∈ Rm with j’th
component α+ αj = 1/m+ αj , by linearity we have that

vec y ∼ Nnm

(
vecα,AΨA ⊗ B2

η +Ψ−1 ⊗ In
)

(F.1)

and
vec y|w ∼ Nnm

(
vec(α+ BηwA),Ψ−1 ⊗ In

)
. (F.2)

By the results of Chapter 4, the posterior distribution of the I-prior random effects is
vec w|y ∼ N(vec w̃, Ṽw), where

vec w̃ = Ṽw(Ψ⊗ Hη) vec(y − 1nα
⊤) and Ṽ−1

w = AΨA ⊗ B2
η +Ψ−1 ⊗ In = Vy.

(F.3)

Suppose hypothetically, one uses the uncentered identity kernel a(j, j′) = δjj′ , in
which case centring of the intercepts αj must be handled separately. In conjunction
with an assumption of iid errors (Ψ = ψIn), the above distributions simplify further.
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Specifically, the variance in the marginal distribution becomes

Var(vec y) = (ψIm ⊗ B2
η) + (ψ−1Im ⊗ In)

= (Im ⊗ ψB2
η) + (Im ⊗ ψ−1In)

= Im ⊗ (

Ṽy︷ ︸︸ ︷
ψB2

η + ψ−1In).

which implies independence and identical variances Ṽy for the vectors (y1j , . . . , ynj)⊤ for
each class j = 1, . . . ,m. Evidently, this stems from the implied independence structure
of the prior on f too, since now Var(vec f) = diag(ψB2

η, . . . , ψB2
η), which could be

interpreted as having independent and identical I-priors on the regression functions for
each class f·j =

(
f(x1, j), . . . , f(xn, j)

)⊤.
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Appendix G

Posterior distribution of the
I-prior regression function

We derive the posterior distribution for the I-prior random effects w = (w1, . . . , wn)
⊤,

which is related to the I-prior regression function via f(xi) =
∑n

k=1 hη(xi, xk)wk, or in
matrix terms, f :=

(
f(x1), . . . , f(xn)

)⊤
= Hηw, and f ∈ F an RKHS with kernel hη.

A closely related distribution of interest is the posterior predictive distribution of ynew,
the prediction at a new data point xnew. We note the similarity of these results with the
posterior distributions of Gaussian process regressions (Rasmussen and Williams, 2006).

G.1 Deriving the posterior distribution for w

In the following derivation, we implicitly assume the dependence on f0 and θ. The
distribution of y|w is Nn(α+f0+Hηw,Ψ−1), where α = α1n, while the prior distribution
for w is Nn(0,Ψ). Since p(w|y) ∝ p(y|w)p(w), we have that

log p(w|y) = log p(y|w) + log p(w)

= const. +
�����1

2
log|Ψ| − 1

2
(y −α− f0 − Hηw)⊤Ψ(y −α− f0 − Hηw)

−
�����1

2
log|Ψ| − 1

2
w⊤Ψ−1w

= const. − 1

2
w⊤(HηΨHη +Ψ−1)w + (y −α− f0)⊤ΨHηw.

Setting A = HηΨHη +Ψ−1, a⊤ = (y −α− f0)⊤ΨHη, and using the fact that

w⊤Aw − 2a⊤w = (w − A−1a)⊤A(w − A−1a),
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we have that w|y is normally distributed with the required mean and variance.

Alternatively, one could have shown this using standard results of multivariate normal
distributions. Noting that the covariance between y and w is

Cov(y,w) = Cov(α+ f0 + Hηw + ϵ,w)

= Hη Cov(w,w)

= HηΨ

and that Cov(w,y) = ΨHη = HηΨ = Cov[y,w] by symmetry, the joint distribution
(y,w) is (

y
w

)
∼ Nn+n

((
α+ f0

0

)
,

(
Vy HηΨ

ΨHη Ψ

))
.

Thus,

E(w|y) = E w + Cov(w,y)(Var y)−1(y − E y)
= ΨHηV−1

y (y −α− f0),

and

Var(w|y) = Var w − Cov(w,y)(Var y)−1 Cov(y,w)

= Ψ− HηΨV−1
y HηΨ

= Ψ−ΨHη

(
Ψ−1 + HηΨHη

)−1 HηΨ

=
(
Ψ−1 + HηΨHη

)−1

= V−1
y

as a direct consequence of the Woodbury matrix identity (Petersen and Pedersen, 2012,
Eq. 156, Sec. 3.2.2).

G.2 Deriving the posterior predictive distribution

The posterior predictive distribution is obtained in an empirical Bayesian manner, in
which the parameters of the model are replaced with their ML estimates (denoted with
hats).

A priori, assume that ynew ∼ N(α̂, vnew), where vnew = hη̂(xnew)⊤Ψ̂hη̂(xnew) + ψ−1
new.

Consider the joint distribution of (ynew,y⊤)⊤, which is multivariate normal (since both
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ynew and y are. Write(
ynew

y

)
∼ Nn+1

((
α̂

α̂1n

)
,

(
vnew Cov(ynew,y)

Cov(ynew,y)⊤ V̂y

))
,

where

Cov(ynew,y) = Cov(fnew + ϵnew, f + ϵ)

= Cov(fnew, f) + Cov(ϵnew, ϵ)

= Cov
(

hη̂(xnew)
⊤w̃,Hη̂w̃

)
+ (σnew,1, . . . , σnew,n)

= hη̂(xnew)
⊤Ψ̂Hη̂ + σnew.

The vector of covariances σnew between observations y1, . . . , yn and the predicted point
ynew would need to be prescribed a priori (treated as extra parameters), or estimated
again, which seems excessive. Under an iid assumption of the error precisions, then
σnew = 0 would be acceptable.

In any case, using standard multivariate normal results, we get that ynew|y is also
normally distributed with mean

E(ynew|y) = α̂+ (hη̂(xnew)
⊤Ψ̂Hη̂ + σnew)V̂−1

y ỹ

= α̂+ hη̂(xnew)
⊤

ŵ︷ ︸︸ ︷
hη̂(xnew)

⊤Ψ̂Hη̂V̂−1
y ỹ + σnewV̂−1

y ỹ
= α̂+ E

(
f(xnew)|y

)
+ mean correction term

and variance

Var(ynew|y) = vnew − (hη̂(xnew)
⊤Ψ̂Hη̂ + σnew)V̂−1

y (hη̂(xnew)
⊤Ψ̂Hη̂ + σnew)

⊤

= hη̂(xnew)
⊤Ψ̂ĥη̂(xnew) + ψ−1

new − hη̂(xnew)
⊤Ψ̂Hη̂V̂−1

y Hη̂Ψ̂hη̂(xnew)

+ variance correction term

= hη̂(xnew)
⊤(Ψ̂− Ψ̂Hη̂V̂−1

y Hη̂Ψ̂
)
hη̂(xnew) + ψ−1

new

+ variance correction term

= hη̂(xnew)
⊤V̂−1

y hη̂(xnew) + ψ−1
new + variance correction term

= Var
(
f(xnew)|y

)
+ ψ−1

new + variance correction term.
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Appendix H

Variational EM algorithm for
I-probit models

The two sections that follow detail the derivation of the variational densities used in
the E-step of the variational EM algorithm, and also the lower bound (ELBO) used to
monitor convergence.

H.1 Derivation of the variational densities

In what follows, the implicit dependence of the densities on the parameters of the model
θ are dropped. We derive a mean-field variational approximation of

p(y∗,w|y) ≈ q(y∗)q(w)

=

n∏
i=1

q(y∗
i )q(w).

The first line is by assumption, while the second line follows from an induced factorisation
on the latent propensities, as we will see later. Recall that the optimal mean-field
variational density q̃ satisfy

log q̃(y∗) = Ew∼q̃

[
log p(y,y∗,w)

]
+ const. (from 5.13)

log q̃(w) = Ey∗∼q̃

[
log p(y,y∗,w)

]
+ const. (from 5.14)

The joint likelihood is given by

p(y,y∗,w) = p(y|y∗)p(y∗|w)p(w).

For reference, the three relevant distributions are listed below.
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• p(y|y∗). For each observation i ∈ {1, . . . , n}, given the corresponding latent
propensities y∗

i = (y∗i1, . . . , y
∗
im), the distribution for yi is a degenerate distribu-

tion which depends on the j’th component of y∗
i being largest, where the value

observed for yi was j. Since each of the yi’s are independent, everything is multi-
plicative.

p(y|y∗) =

n∏
i=1

m∏
j=1

p
[yi=j]
ij =

n∏
i=1

m∏
j=1

1[y∗ij = max
k

y∗ik]
1[yi=j].

• p(y∗|w). Given values for the parameters and I-prior random effects, the distri-
bution of the latent propensities is matrix normal

y∗|w ∼ MNn,m(1nα
⊤ + Hηw, In,Ψ−1).

Write µ = 1nα
⊤ + Hηw. Its pdf is

p(y∗|w) = exp
[
−nm

2
log 2π +

n

2
log|Ψ| − 1

2
tr
(
(y∗ − µ)Ψ(y∗ − µ)⊤

)]
= exp

[
−nm

2
log 2π +

n

2
log|Ψ| − 1

2

n∑
i=1

(y∗
i· − µi·)⊤Ψ(y∗

i· − µi·)
]
,

where y∗
i· ∈ Rm and µi· ∈ Rm are the rows of y∗ and µ respectively. The second

line follows directly from the definition of the trace, but also emanates from the
fact that y∗

i· are independent multivariate normal with mean µi and variance Ψ−1.

• p(w). The w’s are normal random matrices w ∼ MNn,m(0, In,Ψ) with pdf

p(w) = exp
[
−nm

2
log 2π − n

2
log|Ψ| − 1

2
tr
(
wΨ−1w⊤)]

= exp
[
−nm

2
log 2π − n

2
log|Ψ| − 1

2

n∑
i=1

w⊤
i·Ψ

−1wi·

]
.

H.1.1 Derivation of q̃(y∗)

The rows of y∗ are independent, and thus we can consider the variational density for
each y∗

i separately. Consider the case where yi takes one particular value j ∈ {1, . . . ,m}.
In such cases, we have that y∗ij > yik for all k ̸= j, and that

log q̃(y∗
i·) = Ew∼q̃

[
−1

2
(y∗

i − µi)
⊤Ψ(y∗

i − µi)

]
+ const.

=

[
−1

2
(y∗

i − µ̃i)
⊤Ψ(y∗

i − µ̃i)

]
+ const. (⋆)
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where µ̃i· = α + w̃hη(xi), w̃ = Ew∼q̃[w]. This is recognised as the logarithm of a
multivariate normal pdf with mean µ̃i· and variance Ψ−1. On the other hand, when
yi ̸= j, the pdf is zero. Thus,

q̃(y∗
i·) =

ϕ(y∗
i·|µ̃i·,Ψ−1) if y∗ij > y∗ik,∀k ̸= j

0 otherwise,

implying a truncated multivariate normal distribution for y∗
i·. The required moments

from the truncated multivariate normal distribution can be obtained using the methods
described in Appendix C.4 (p. 281).

Remark H.1. In the above derivation, we needn’t consider the second order terms in the
expectations because they do not involve y∗

i·, and thus, these terms can be absorbed
into the constant. To see this,

E[(y∗
i· − µi·)⊤Ψ(y∗

i· − µi·)] = E[y∗⊤
i· Ψy∗

i· + µ⊤
i·Ψµi· − 2µ⊤

i·Ψy∗
i·]

= y∗⊤
i· Ψy∗

i· − 2E[µ⊤
i·]Ψy∗

i· + const.

= y∗⊤
i· Ψy∗

i· − 2µ̃⊤
i·Ψy∗

i· + const.

= (y∗
i· − µ̃i·)⊤Ψ(y∗

i· − µ̃i·) + const.

The square is then completed to get the final line, which is the expression for the term
(⋆) multiplied by a half.

H.1.2 Derivation of q̃(w)

The terms involving w in the joint likelihood (5.14) are the p(y∗|w) and p(w) terms, so
the rest are absorbed into the constant. The easiest way to derive q̃(w) is to vectorise
y∗ and w. We know that

vec y∗|α,w, η,Ψ ∼ Nnm

(
vec(1nα

⊤ + Hηw),Ψ−1 ⊗ In
)

and

vec w|Ψ ∼ Nnm(0,Ψ⊗ In)

using properties of matrix normal distributions.
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We also use the fact that vec(Hηw) = (Im ⊗ Hη) vec w. For simplicity, write ȳ∗ =

vec(y∗ − 1nα
⊤), and M = (Im ⊗ Hη). Thus,

log q̃(w) = Ey∗∼q̃

[
−1

2
(ȳ∗ − M vec w)⊤(Ψ−1 ⊗ In)−1(ȳ∗ − M vec w)

]
+ Ey∗∼q̃

[
−1

2
(vec w)⊤(Ψ⊗ In)−1 vec(w)

]
+ const.

= − 1

2
Ey∗∼q̃

(vec w)⊤
( A︷ ︸︸ ︷

M⊤(Ψ⊗ In)M + (Ψ−1 ⊗ In)
)

vec(w)


+ Ey∗∼q̃

[ a⊤︷ ︸︸ ︷
ȳ∗⊤(Ψ⊗ In)M vec(w)

]
+ const.

= − 1

2
Ey∗∼q̃

[
(vec w − A−1a)⊤A(vec w − A−1a)

]
+ const.

This is recognised as a multivariate normal of dimension nm with mean and precision
given by vec w̃ = E[A−1a] and Ṽ−1

w = E[A] respectively. With a little algebra, we find
that

Ṽw =
{

Ey∗∼q̃[A]
}−1

=
{

Ey∗∼q̃

[
(Im ⊗ Hη)

⊤(Ψ⊗ In)(Im ⊗ Hη) + (Ψ−1 ⊗ In)
]}−1

=
(
Ψ⊗ H2

η +Ψ−1 ⊗ In
)−1

and

vec w̃ = Ey∗∼q̃[A−1a]
= Ṽw Ey∗∼q̃

[
(Im ⊗ Hη)(Ψ⊗ In) vec(y∗ − 1nα

⊤)
]

= Ṽw(Ψ⊗ Hη)Ey∗∼q̃

[
vec(y∗ − 1nα

⊤)
]

= Ṽw(Ψ⊗ Hη) vec(ỹ∗ − 1nα
⊤).

We will often refer to w̃ as the n ×m matrix constructed by filling in its entries with
vec w̃ column-wise (akin to the opposite of vectorisation). This way, the w̃ contains
posterior mean values arranged by class j = 1, . . . ,m column-wise, and by observations
i = 1, . . . , n row-wise. Ideally, we do not want to work with the nm × nm matrix Vw,
since its inverse is expensive to compute. Refer to Section 5.6.2 (p. 176) for details.
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In the case of the independent I-probit model, where Ψ = diag(ψ1, . . . , ψm), then the
covariance matrix takes a simpler form. Specifically, it has the block diagonal structure:

Ṽw =
(

diag(ψ1, . . . , ψm)⊗ H2
η + diag(ψ1, . . . , ψm)⊗ In

)−1

= diag
((
ψ1H2

η + ψ−1
1 In

)−1
, · · · ,

(
ψmH2

η + ψ−1
m In

)−1
)

=: diag(Ṽw1 , . . . , Ṽwm).

The mean vec w̃ is

vec w̃ = Ṽw(diag(ψ1, . . . , ψm)⊗ H̃η) vec(ỹ∗ − 1nα
⊤)

= diag(Ṽw1 , . . . , Ṽwm)diag(ψ1Hη, . . . , ψmHη) vec(ỹ∗ − 1nα
⊤)

= diag(ψ1Ṽw1Hη, . . . , ψmṼwmHη)(ỹ∗ − 1nα
⊤)

=
( w̃⊤·1 · · · w̃⊤·m(
ψ1Ṽw1Hη(ỹ∗·1 − α11n)

)⊤ · · ·
(
ψmṼwmHη(ỹ∗·m − αm1n)

)⊤ )⊤.
Therefore, we can consider the distribution of w = (w·1, . . . ,w·m) column-wise, and
each are normally distributed with mean and variance

w̃·j = ψjṼwjHη(ỹ∗
·j − αj1n) and Ṽwj =

(
ψjH2

η + ψ−1
j In

)−1
.

A quantity that we will be requiring time and again will be tr(C E[w⊤Dw]), where
C ∈ Rm×m and D ∈ Rn×n are both square and symmetric matrices. Using the definition
of the trace directly, we get

tr(C E[w⊤Dw]) =
m∑

i,j=1

Cij E(w⊤Dw)ij

=
m∑

i,j=1

Cij E(w⊤
·iDw·j). (H.1)

The expectation of the univariate quantity w⊤·iDw·j is inspected below:

E(w⊤
·iDw·j) = tr(D E[w·jw⊤

·i])

= tr
(

D
[

Cov(w·j ,w·i) + E(w·j)E(w·i)⊤
])

= tr
(

D
[
Vw[i, j] + w̃·jw̃⊤

·i
])
.

where Vw[i, j] ∈ Rn×n refers to the (i, j)’th submatrix block of Vw. Of course, in the
independent the I-probit model, this is equal to

Vw[i, j] = δij(ψjH2
η + ψ−1

j In)−1
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where δ is the Kronecker delta. Continuing on (H.1) leads us to

tr(C E[w⊤Dw]) =
m∑

i,j=1

Cij tr
(

D
[
δijVwj + w̃·jw̃⊤

·i
])
.

If C = diag(c1, . . . , cm), then

tr(C E[w⊤Dw]) =

m∑
j=1

cj

(
tr
(
DṼwj

)
+ w̃⊤

·jDw̃·j
)

=
m∑
j=1

cj tr
(

D
[
Ṽwj + w̃·jw̃⊤

·j
])
.

H.2 Deriving the ELBO expression

The evidence lower bound (ELBO) expression involves the following calculation:

Lq(θ) =

∫
· · ·
∫
q(y∗,w) log p(y,y

∗,w|θ)
q(y∗,w)

dy∗ dw dθ

= E
[

log
joint likelihood︷ ︸︸ ︷
p(y,y∗,w|θ)

]
+

entropy︷ ︸︸ ︷
−E

[
log q(y∗,w)

]
= E

[
����������n∑
i=1

m∑
j=1

log p(yi|y∗ij) +
n∑

i=1

log p(y∗
i·|α,w,Ψ, η) + log p(w|Ψ)

]

+
n∑

i=1

H
[
q(y∗

i·)
]
+H

[
q(w)

]
.

As discussed, given the latent propensities y∗, the pdf of y is degenerate and hence can
be disregarded.

H.2.1 Terms involving distributions of y∗

n∑
i=1

{
E
[

log p(y∗
i·|α,w,Ψ, η)

]
+H

[
q(y∗

i·)
]}

= − nm

2
log 2π +

n

2
log|Ψ| − 1

2
E
[ n∑

i=1

(y∗
i· − µ̃i·)⊤Ψ(y∗

i· − µ̃i·)
]

+
nm

2
log 2π − n

2
log|Ψ|+ 1

2
E
[ n∑

i=1

(y∗
i· − µ̃i·)⊤Ψ(y∗

i· − µ̃i·)
]
+ logCi

=
n∑

i=1

logCi
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where Ci is the normalising constant for the distribution of multivariate truncated normal
y∗
i· ∼ tN(µ̃(xi),Ψ

−1, Cyi), with µ̃(xi) = α+ w̃hη(xi).

H.2.2 Terms involving distributions of w

E log p(w|Ψ) +H
[
q(w)

]
= ������−nm

2
log 2π − n

2
log|Ψ| − 1

2
E tr

(
wΨ−1w⊤)

+
nm

2
(1 +���log 2π ) + 1

2
log|Ṽw|

=
nm

2
− n

2
log|Ψ| − 1

2

m∑
i,j=1

Ψ−1
ij tr E

[
w̃·jw̃⊤

·j
]
+

1

2
log|Ṽw|
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Appendix I

The Gibbs sampler for the I-prior
Bayesian variable selection model

The I-prior Bayesian variable selection model has the following hierarchical form:

y|α,β, γ, σ2, κ ∼ Nn(α1n + Xθ, σ2In)

θ = (γ1β1, . . . , γpβp)
⊤

β|σ2, κ ∼ Np(0, σ2κX⊤X)

α|σ2 ∼ N(0, σ2A)

σ2, κ ∼ Γ−1(c, d)

γj ∼ Bern(πj) j = 1, . . . , p

In the simulations and real-data examples, we used πj = 0.5,∀j, A = 100, and c = d =

0.001, and the columns of the matrix X are standardised.

The first line of the set of equations above is the likelihood, while the joint prior
density is given by

p(α, β, γ, σ2, κ) = p(β|σ2)p(α|σ2)p(σ2)p(κ)p(γ1) · · · p(γp).

For simplicity, in the following subsections we shall denote by Θ the entire set of param-
eters, while Θ−ξ implies the set of parameters excluding the parameter ξ.
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I.1 Conditional posterior for β

log p(β|y,Θ−β) = const. + log p(y|Θ) + log p(β|σ2)

= const. − 1

2σ2
∥y − α1n − Xγβ∥2 −

1

2σ2
β⊤(κX⊤X)−1β

= const. − 1

2σ2

(
β⊤(X⊤

γ Xγ + (κX⊤X)−1)β − 2(y − α1n)
⊤Xγβ

)
= const. − 1

2σ2
(
β − B̃(y − α1n)

)⊤B̃−1
(
β − B̃(y − α1n)

)
where B̃ = X⊤

γ Xγ + (κX⊤X)−1, and Xγ = (γ1X1 · · · γpXp) is the n × p design matrix
X with each of the p columns multiplied by the indicator variable γ. This is of course
recognised as the log density of a p-variate normal distribution with mean and variance

E(β|Θ−β) = B̃(y − α1n) and Var(β|Θ−β) = σ2B̃.

I.2 Conditional posterior for γ

Consider each γj in turn. For j ∈ {1, . . . , p},

p(γj |y,Θ−γj ) ∝ p(y|Θ)p(γj)

∝ exp
(
− 1

2σ2
∥y − α1n − Xθ∥2

)
π
γj
j (1− πj)

1−γj

Since the support of γj is {0, 1}, the above is a probability mass function which can be
normalised easily. When γj = 1, we have

p(γj |y,Θ−γj ) ∝ πj exp
(
− 1

2σ2
∥y − α1n − Xθ

[1]
j ∥2

)
:= uj

while for γj = 0, we have

p(γj |y,Θ−γj ) ∝ (1− πj) exp
(
− 1

2σ2
∥y − α1n − Xθ

[0]
j ∥2

)
:= vj .

For j = 1, . . . , p, we have used the notation θ
[ω]
j to mean

θ
[ω]
j =

(θ1, . . . , θj−1, βj , θj+1, . . . , θp)
⊤ ω = 1

(θ1, . . . , θj−1, 0, θj+1, . . . , θp)
⊤ ω = 0.
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Therefore, the conditional distribution for γj is Bernoulli with success probability

π̃j =
uj

uj + vj
.

I.3 Conditional posterior for α

We can obtain the conditional posterior for α in a similar fashion we obtained the
conditional posterior for β. That is,

log p(α|y,Θ−α) = const. + log p(y|Θ) + log p(α|σ2)

= const. − 1

2σ2
∥y − α1n − Xθ∥2 − α2

2σ2A

= const. − 1

2σ2

(
(n+A−1)α2 − 2α

n∑
i=1

(yi − x⊤
i θ)

)

= const. − 1

2σ2(n+A−1)

(
α−

∑n
i=1(yi − x⊤

i θ)

n+A−1

)2

.

Thus, the conditional posterior for α is normal with mean and variance which can be
easily read off the final line above.

I.4 Conditional posterior for σ2

The conditional density for σ2 is

log p(σ2|y,Θ−σ2) = const. + log p(y|Θ) + log p(σ2)

= const. − n

2
logσ2 − 1

2σ2
∥y − α1n − Xθ∥2 − (c+ 1) logσ2 − d/σ2

= const. − (n/2 + c+ 1) logσ2 − ∥y − α1n − Xθ∥2/2 + d

σ2

which is an inverse gamma distribution with shape c̃ = n/2 + c + 1 and scale d̃ =

∥y − α1n − Xθ∥2/2 + d.
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I.5 Conditional posterior for κ

Interestingly, since κ is a hyperparameter to be estimated, it does not actually make use
of any data, apart from the appearance of X in the covariance matrix for β.

log p(κ|y,Θ−κ) = const. + log p(β|σ2, κ) + log p(κ)

= const. − p

2
logκ− 1

κ
· 1

2σ2
β⊤(X⊤X)−1β − (c+ 1) logκ− d/κ

= const. − (p/2 + c+ 1) logκ− β⊤(X⊤X)−1β/σ2 + d

κ

This is an inverse gamma distribution with shape c̃ = p/2 + c + 1 and scale d̃ =

β⊤(X⊤X)−1β/σ2 + d.

I.6 Computational note

From the above, we see that all of the Gibbs conditionals are of recognisable form,
making Gibbs sampling a straightforward MCMC method to implement. We built an R
package ipriorBVS that uses JAGS (Plummer, 2003), a variation of WinBUGS, internally
for the Gibbs sampling, and wrote a wrapper function which takes formula based inputs
for convenience. The ipriorBVS also performs two-stage BVS, and supported priors are
the I-prior, g-prior, and independent prior, as used in this thesis. Although a Gibbs
sampler could be coded from scratch, JAGS has the advantage of being tried and tested
and has simple controls for tuning (burn-in, adaptation, thinning, etc.). Furthermore,
the output from JAGS can be inspected using a myriad of multipurpose MCMC tools
to diagnose convergence problems. The ipriorBVS package is available at https://
github.com/haziqj/ipriorBVS.

In all examples, a default setting of 4,000 burn-in samples, 1,000 adaptation size, and
10,000 samples with no thinning seemed adequate. There were no major convergence
issues encountered.

Computational complexity is dominated by the inversion of a p×p matrix, and matrix
multiplications of order O(np2). These occur in the conditional posterior for β. Overall,
if n≫ p, then time complexity is O(np2). Storage requirements are O(np).
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